Statistical correlations of nuclear
quadrupole deformations and charge radii

Paul-Gerhard Reinhard and Witold Nazarewicz

Changfeng Jiao ((51<I)

Shool of Physics and Astronomy
Sun Yat-Sen University tandard model two-neutrino heutrinoless

beta decavy beta decay

Journal Club, June 21st @ Zhuhai, Guangdong



The purpose of this Paper: analyse the local trends of quadrupole
deformations and charge radii in terms of statistical correlations between
predicted observables in neighboring nuclei.

Occupations of s.p.levels change Large statistical correlations
smoothly with Zand N, and the II~ between deformations and radii
character of s. p. levels around in close-lying isotopes and

the Fermi level is similar isotones.

Thus the trend of statistical correlations can

O indicates changes in shell structure.

O provide important information for modeling emulators based on
machine learning.

O help assessing statistical errors on differences of observables.
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The Skyrme force
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The two-body interaction is given by
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where [ (Vl — VQ) , k= —% ($1 — vQ)

T %
The three-body interaction is given by

w83 = 436 (11 — 12) 8 (1o — 73)



Theoretical models

The Skyrme force parameter set: SV-min

Fitting strategy:
The free parameters of the SHF ansatz are determined by a least-squares fit.

Let us consider a model having N, parameters p = (p;, . . ., pnp ) that are
fitted to N4 measured observables O; (i=1,..., N).
(©p) - O
x> (p) = Z NG

=1

The adopted errors are determined as follows.

AOP = (AOP?)? +[(AO?““’)2]+[(AO}“‘°’)2 ] How to determine AO;™

usually small

in the case of statistical fluctuations there is a consistency between the
distribution of residuals and the adopted error. Namely, the rules of

statistical analysis require that the total penalty function at the minimum

should be normalized to Ny =N,
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Theoretical models

The Skyrme force parameter set: SV-min

one needs to confine the model space to a “physically reasonable” domain

around the minimum pg. we can expand x*as
NP
Xz(P)—Xg ~ Z (pa: _pO,a')Maﬁ(pﬁ - Po,ﬁ),
o, p=1
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The adopted errors are determined as follows.
P —p)M(p —py < 1, 2 ()
Xnorm(p)
in the case of statistical
fluctuations there is a consistency
between the

reasonable
szlorm(Po) 4 1 e b s _ domain
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Theoretical models

. Skyrme force parameter set: SV-min

P. Klupfel et. al., PRC 79, 034310 (2009). & :;
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TABLE 1. Global quality measures for various classes of
observables as achieved with the parameterization SV-min. The
second column shows the contribution from an observable to x?
while the third column expresses this as x> per data point. The
last column produces the r.m.s. errors as such and the numbers in

60 SV-min ®

error r.m.s. radius [mfm]
N
S8 o8
=
S

—p i
B e

@ .
c -
v" /
an

brackets indicate the adopted error taken as weights for the fit; see -60 well deformed —o—

fit nuclei —=—

Eq. (5).

> 6
A
T 4
x? x*/point  r.m.s. error § :
Binding energy E 12.07 0.17 0.62 MeV  (1.0) E :11 :
Diffr., radius R 11.18 0.40 0.029 fm (0.04) 5 af) well deformed —>—
Surface thick. o 4.22 0.26 0.022 fm (0.04) = 3 fit nuclel —=—
r.m.s. radius r 15.86 0.32 0.014 fm (0.02) % :
Pairing gap A, 4.27 025 0.11 MeV  (0.12) g ;
Pairing gap A, 2.43 0.15 0.14 MeV  (0.12) g 11
I-s splitting 3.18 045  0.25% (20) 5 ol
Total 53.22 0.26 ® :; ! well deformed —o—

50 100 150 200 250
mass number A



Theoretical models

ll. Fayans and Skyrme energy density functionals: Fy(Ar,BCS)

P.-G. Reinhard and W. Nazarewicz, PRC 95, 064328 (2017).

"The Fayans pairing
functional, with its
generalized density
dependence,
significantly
improves the
description of
charge radii in odd
and even nuclei.”

Teh /(1.16A1/3) (fm)
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Theoretical models i

The Skyrme force parameter set: SV-min

Statistical error:

Given a set of parameters p, any observable A can be within the model
uniquely computed as A = A(p). The value of A thus varies within the
confidence ellipsoid, and this results in some uncertainty 4A of A.

A(p) ~A0+G* - (p—py) for Ag=A(p) and G* =3,A

Py
The prescription for assigning an error to A(py) is the following formula

AAZ =) " GaCupGy, where ¢ is the covariance matrix
ap

“ " o N\ —1
C=M"1= (JTJ)
where
apaOiL’o

J:'a' =
AQO;

is the Jacobian matrix, which is inversely proportional to the adopted errors.



Statistical correlation analysis

A weighted average over the parameter space yields the covariance between two observables
A and B, which represents their combined uncertainty:

AAAB =) GiCusGl.
of

In addition, one can introduce a useful dimensionless product-moment
correlation coefficient

|AA AB| , . cov(z,y)
CAp = . in this paper, Rm_y — )
VAA2 AR | 020y

Positive covariance: Indicates that two variables tend to move in the same direction.
Negative covariance: Reveals that two variables tend to move in inverse directions.

The square R? is the coefficient of determination (CoD). It contains
information on how well one quantity is determined by another one,
within a given model.

0 < R2 <1 R2 = 0: the quantities x and y are uncorrelated.
R2 = 1: one quantity determines the other completely.



Statistical correlation analysis

The square R? is the coefficient of determination (CoD). It contains
information on how well one quantity is determined by another one,
within a given model.

0< R%2 <1 R2 = 0: the quantities x and y are uncorrelated.
R2 = 1: one quantity determines the other completely.

The correlation coefficient is useful when estimating the variance of a
difference x — y

_ 2 2
Opy =0y +0, — 2Ry 40,0y

If R, = 1, then

Oyp—y R |0z — 0y



Calculated quadrupole deformations

(r*Ya0)

N A/ _ 1/3
T 372 R=12A"7°fm

Bo =4

Calculated values of 8, for SV-min

ol

and Fy(Ar,BCS) and compares them to g

empirical quadrupole deformations
extracted from the experimental
transition probabilities for the lowest
2% states.

Nuclear deformation properties are
dominated by shell topology: all
reasonable nuclear models, including
macroscopic-microscopic approaches
as well as various flavors of nuclear
density functional method, are bound
to reproduce the deformations of well
deformed nuclei.
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Calculated quadrupole deformations

The values of B, predicted by SV-min
are 5%-10% larger and the trend for
the Hf isotopes differs visibly.

Although the deformation is
dominated by shell structure, the final
details emerge from an interplay of
Coulomb pressure, surface energy,
shell effects, and pairing, which all
depend on the actual model.

Coulomb pressure and surface energy
change only smoothly with Zand N

and this should lead to strong inter- '
correlations. However, shell structure R .
and pairing can fluctuate. 028} Fy(Ar,BCS)
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Charge radius (fm)

Calculated charge radii
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The charge radii Rch of the discussed
Er, Yb, and Hf isotopes are displayed
in Fig. 2. The radii gradually increase
with Z and N, as expected. The
fluctuations atop this smooth
behavior are seen in the differential
radii and their ratios. The charge radii
obtained in SVmin are systematically
larger than those of Fy(Ar,BCS).
This, together with the results for the
quadrupole moments shown in Fig. 1
suggests that the proton densities
predicted by SV-min are slightly more
radially extended.



Proton number
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CoDs between the deformation
B, in 18Hf (upper panels), 172Yb
(middle panels), and 1Er (lower
panels) and 3, values of all
other isotopes. The reference
nucleus is indicated in each
panel by a stat.

the quadrupole deformations o
172Yb (N = 102) and 19Er (N =

98) are well correlated with
those of neighboring nucleilf§te

accordance with expectations. It
i only when the neutron number
approaches N= 106 that

the correlation deteriorates. The
situation is different for 178Hf{.
Here, the CoD values are small,
even with the nearest neighbors.



Statistical correlations between the charge radii

The inter-nuclei correlations of
charge radii.

It is seen that the values of R,
are intercorrelated better than
quadrupole deformations. But,
similar as in the 3, case, there
are regions of surprisingly low
CoDs. Particularly low
correlations are predicted for
170Hf in SV-min and ""Hf in
Fy(Ar,BCS) for both 8, and R,
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The significant variations of CoDs are indicative of shell effects.



Nilsson Diagram (s. p. energies)

Single-partice energies (MeV)

S R 1 /e

D

y

[4111312'

I . r = [413]5/2

21012 1

L) (Thenereen

0.30

0.35 0.20

Quadrupole deformation f3,

IG. 5. Proton (top) and neutron (bottom) single-particle energies of '"?Yb calculated with SV-min (left) and Fy(Ar,BCS)
ight) EDFs. The asymptotic Nilsson labels [Nosen.A]QQ" are marked. The positions of proton Fermi levels for the N = 102
otones is indicated by stars in panel (b) and the neutron Fermi levels along the Yb isotopic chain - in panel (d).



Nilsson Diagram (s. p. energies)
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gion is defined by the pronounced deformed subshell
closure at Z = 70. At lower deformations, this gap

bitals [404]7/2" and [402]5/2T. At larger deformations,

Z = 70 gap, there appear two close-lying Nilsson levels:
oblate-driving [411]1/2" and prolate-driving [532]7/2~
which close another deformed gap at Z = 66. These lev-
els cross at B2 ~ 0.30 for Fy(Ar,BCS) and 2 ~ 0.39 for
SV-min.

The proton Shell structure in the deformed Yb re-| c

is closed by the upsloping (oblate-driving) extruder or-[

B2 > 0.33, the downsloping (prolate-driving) [541]1/27 [ “ =

intruder level becomes occupied at Z = 72. Below thel:

b 3,

3 fated with SV-min (left) and Fy(Ar,BCS)

hs of proton Fermi levels for the N = 102
isotopic chain - in panel (d).




Single-partice energies (MeV)

Nilsson Diagram (s. p. energies)

The neutron shell structure is characterized by the de-
formed gap at N = 104. This gap is closed from the
iabove by the oblate-driving [514]7/2~ and the unique-
[|parity [624]9/27 levels, which cross at By ~ 0.35. From
“the below, the V = 104 gap is bounded by the prolate-
driving unique-parity [633]7/27 level and the oblate-
driving [512]5/27 level, which cross at B> ~ 0.32 for

SV-mm and [z ~ 0 28 for Fy(Ar,BCS).
: o (b) - S R

neutrons
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Pairing effects

In the presence of nucleonic pairing, the
s.p. occupations change gradually with
particle number leading to smooth
variations of nuclear observables. If
o o o o o /—\

pairing is weak, the transitions between :q>)
intrinsic HF configurations are sharp S
and the underlying picture becomes > & —— protons
diabatic. Consequently, large pairingis g5 -8 .. neutrons
expected to increase correlations 5 (bj Fy( Ar BC S)I ' '
between observables belonging to 2 ’

. . = -2t — *
different nuclet. g

Q-‘ el —
: -4 - TR
The large deformed gap at Z= 70 gives RS 0 ling
rise to very weak proton pairing in the 6F - B
Yb isotopes. The variations of neutron o Y{)
pairing are appreciable; they reach I Hf
@ —

a minimum at the deformed neutron

08 100 102 104 106
closure N= 104.

Neutron number



Nilsson Diagram (s. p. energies)

Fy(Ar,BCS)

‘ The systematic trend of B2 in Fig. 1 can be traced back
{to the s.p. diagram of Fig. 5. The quadrupole deforma-
tions of Er and Yb isotopes are close as the quadrupole
Jpolarization effects of [411]1/2% and [523]7/2~ proton
_|levels compensate. The reduction of 2 in the Hf iso-
~topes in Fy(Ar,BCS) and for N > 100 in Fy(Ar,BCS)
can be attributed to the occupations of the oblate-driving
7o [404]7/2% and [402]5/27F proton levels. The large value
S , o , Jof By in '"2Hf predicted in SV-min is due to the fill-
0.20 0.25 0.30 0.35 0.20 ing of the 7[514]1/2~ level. Finally, a reduction of 3,
Quadrupole deformati when approaching N = 106 reflects the filling of oblate-

driving [512]5/27 and [514]7/27 neutron levels. When it
comes to the charge radii, the local increase of R}, around
N = 100,102 can be associated with the occupation of
the neutron intruder level [633]7/2*.

Single-partice energies (MeV)

[633]7/2*
o D212y




Single-partice energies (MeV)

Nilsson Diagram (s. p. energies)
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Let us begin discussion from the CoD pattern of ;.
As seen in Figs. 3(a) and 3(d), 32 in 1"8Hf is poorly corre-
lated with quadrupole deformations of other nuclei. This
nucleus is predicted to have a reduced value of 52 ~ 0.3
compared to other systems. At this deformation, the
last two protons of "®Hf occupy the [404]7/2T and
[402]5/2T extruder orbits, which are practically empty
in the Yb and Er isotopes, as well as in 179172.174Hf in
SV-min in which the intruder level [541]1/2~ becomes
occupied at B3 > 0.34. Moreover, the neutron structure
of "Hf involves the occupation of the [514]7/2~ and
[624]9/2T orbitals, which are empty in lighter isotopes
with NV < 104. All these configuration changes involve
deformation-driving orbitals and result in reduced CoD

values.




Nilsson Diagram (s. p. energies)

[A11112°

2055, [41113/2°

Single-partice energies (MeV)

2 [521]

_________ V2 T

g ey Ty

0..35 0.20
Quadrupole deformation f3,

Moving on to Figs. 3(b) and 3(e), the quadrupole de-
formation of !"2Yb is correlated fairly well with the 3,
values of lighter systems. This nucleus is calculated to

have (82 =~ 0.34. The decrease of correlations at N = 106
can be associated with the filling of the neutron [624]9/2"
intruder level. The situation shown in Figs. 3(c) and
3(f) for '%Er is reminiscent of that for "2Yb: the de-
crease of fa-correlations is seen for N = 106 (neutron
[624]9/2" occupation) and Z = 72 (proton [541]1/2~ or
[404]7/27 /[402]5/27F occupation).




This paper investigated inter-correlations between observables in
neighboring nuclei which exhibit smooth trends as a function of proton or
neutron number. The calculated quadrupole moments and charge radii
vary gradually with Zand N, which would intuitively suggest strong inter-
correlations.

The calculated CoD diagrams show patterns that are surprisingly localized
as compared to the smooth trends of observables. These local variations
of CoDs reflect the underlying deformed shell structure and changes of
single-particle configurations due to crossings of s.p. levels, especially
high-N,,. intruder and oblate-driving extruder levels.

Our results suggest that the frequently made assumption of strong
correlations between smoothly-varying observables, which must result in
reduced statistical errors of their differences, cannot always be justified.



