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Introduction

Even-Even Nuclei
A important development: describe even-even nuclei with effective
interactions (Skyme, Gogny and relativistic ones). It mainly
achieved by the means of beyond-mean-field-theories (BMFT).
The shape parameters (β, γ) were used as coordinates in GCM
and particle-number(PN) and angular-momentum(AM)
symmetries were recovered by projection.

Odd-Even Nuclei
Odd nuclei are far more complicated to deal with (even at
mean-field level like HFB or BCS). Furthermore, the blocked
structure of the wave function entail the breaking of the
time-reversal symmetry and triaxial calculations must be
performed.
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Introduction

Purpose
Report on the first systematic description of the odd and even
nuclei of an isotopic chain in a symmetry-conserving approach with
the Gogny force in a BMFT considering the (β, γ) degrees of
freedom explicitly and dealing optimally with the pairing
correlations.
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Theoretical Frame

The HFB wavefunction |ϕ⟩ is a product of quasi-particles αρ:

α†
ρ =

∑
µ

Uµρc†
µ + Vµρcµ (1)

In their approach they have imposed three discrete self-consistent
symmetries on basis states c†

µ, cµ: spatial parity, P̂, simplex,
Π1 = P̂e−iπJx and Π2Γ with Π2 = P̂e−iπJy and Γ the time
reversal operator. The basis is symmetrized in such a way:

Π1c†
kΠ†

1 = +ic†
k , Π1c†

k̄Π†
1 = −ic†

k̄ (2)

with k = 1, . . . , M and 2M the dimension of the configuration
space.
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Theoretical Frame

Using Latin indices to distinguish the levels according to their
simplex, {k, l , m} for simplex +i and {k̄, l̄ , m̄} for simplex −i . If
the intrinsic wave function is an eigenstate of the simplex operator,
for a paired even-even nucleus half of the quasiparticle operators
α†

µ, have simplex +i and the other half have simplex −i .

α†
m =

M∑
k=1

U+
kmc†

k + V +
kmck̄

α†
m̄ =

M∑
k=1

U−
kmc†

k̄ + V −
kmck

(3)

with m = 1, . . . , M
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Theoretical Frame

The wave function of ground state of an even-even nuclei:

|ϕ⟩ =
2M∏
µ=1

αµ|−⟩ (4)

The quasiparticle vacuum:

αµ|ϕ⟩ = 0, µ = 1, . . . , 2M. (5)

The one quasiparticle excitations (correspond to odd-even nuclei):

|ϕ̃⟩ = α†
ρ1 |ϕ⟩ (6)

They can be written as vacuum to the quasiparticle operators α̃ρ,

α̃ρ|ϕ̃⟩ = 0, ρ = 1, . . . , 2M. (7)
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Theoretical Frame

{α̃†
ρ} are obtained from the set {α†

µ} by replacing α†
ρ1 by αρ1 . The

simplex state |ϕ̃⟩ is given by Π1|ϕ̃⟩ = in|ϕ̃⟩ (n = 1 if α†
ρ1 has

simplex +i and n = −1 if α†
ρ1 has simplex −i). The blocked wave

function |ϕ̃⟩ is vacuum to M+ = M − n operators ˜alpha†
m with

simplex +i and to M− = M + n operators α̃†
m̄ with simplex −i .

α̃†
m =

M∑
k=1

Ũ+
kmc†

k + Ṽ +
kmck̄ , m = 1, . . . , M+,

α̃†
m̄ =

M∑
k=1

Ũ−
kmc†

k̄ + Ṽ −
kmck , m = 1, . . . , M−.

(8)

The matrices (Ũ+, Ṽ +, Ũ−, Ṽ −) are obtained from
(U+, V +, U−, V −) by corresponding columns exchange
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Theoretical Frame

Constrain calculation:

E ′[ϕ̃] = ⟨ϕ̃|ĤP̂N |ϕ̃⟩
⟨ϕ̃|P̂N |ϕ̃⟩

− ⟨ϕ̃|λq0Q̂20 + λq2Q̂22|ϕ̃⟩ (9)

Lagrange multipilier γq0 and γq2 being determined by the
constraints

⟨ϕ̃|Q̂20|ϕ̃⟩ = q0, ⟨ϕ̃|Q̂22|ϕ̃⟩ = q2 (10)
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Theoretical Frame

GCM:

|ΨN,I,π
M,σ (β, γ)⟩ =

∑
K

g I
KσPNP I

MK |ϕ̃π(β, γ)⟩

=
∑
K

g I
Kσ|IMK , π, N, (β, γ)⟩

(11)

Reduced Hill-Wheeler-Griffin equation∑
K ′

(HN,I,π
K ,K ′ − EN,I,π

σ N N,I,π
K ,K ′ )g I

K ′σ = 0 (12)

Hamiltonian and norm overlaps:

HN,I,π
K ,K ′ =⟨IMK , π, N, (β, γ)|H|IMK ′, π, N, (β, γ)⟩

N N,I,π
K ,K ′ =⟨IMK , π, N, (β, γ)|IMK ′, π, N, (β, γ)⟩

(13)
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Theoretical Frame

Energy

EN,I,π
σ (β, γ) =

⟨ΨN,I,π
M,σ (β, γ)|H|ΨN,I,π

M,σ (β, γ)⟩
⟨ΨN,I,π

M,σ (β, γ)|ΨN,I,π
M,σ (β, γ)⟩

(14)

The collective wave function

GJ
K ,σ =

∑
K ′

(N N,I,π)1/2
K ,K ′g I

K ′,σ (15)
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Results Analysis
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Results Analysis
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Results Analysis

△3
0(A) = 1

2[B(A + 1) + B(A − 1) − 2B(A)]. (16)
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Results Analysis
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Results Analysis
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Summarise

In conclusion, we have presented a novel approach with exact
conservation of angular momentum and particle number to
describe odd–even nuclei. We have applied this theory to the
description of ground-state properties of the Magnesium isotopic
chain with the effective Gogny force. The results are in very good
agreement with the experimental bulk properties, energy gaps and
electromagnetic moments.
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