Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach

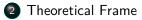
Wei Lin

Sun Yat-sen University

linw33@mail2.sysu.edu.cn

September 26, 2022

Introduction





Even-Even Nuclei

A important development: describe even-even nuclei with effective interactions (Skyme, Gogny and relativistic ones). It mainly achieved by the means of **beyond-mean-field-theories** (BMFT). The shape parameters (β , γ) were used as coordinates in **GCM** and particle-number(**PN**) and angular-momentum(**AM**) symmetries were recovered by projection.

Odd-Even Nuclei

Odd nuclei are far more complicated to deal with (even at mean-field level like **HFB** or **BCS**). Furthermore, the blocked structure of the wave function entail the breaking of the **time-reversal** symmetry and **triaxial calculations** must be performed.

Purpose

Report on the first systematic description of the odd and even nuclei of an isotopic chain in a symmetry-conserving approach with the **Gogny force** in a BMFT considering the (β, γ) degrees of freedom explicitly and dealing optimally with the pairing correlations.

The HFB wavefunction $|\phi\rangle$ is a product of quasi-particles α_{ρ} :

$$\alpha_{\rho}^{\dagger} = \sum_{\mu} U_{\mu\rho} c_{\mu}^{\dagger} + V_{\mu\rho} c_{\mu}$$
(1)

In their approach they have imposed three discrete self-consistent symmetries on basis states $c_{\mu}^{\dagger}, c_{\mu}$: spatial parity, \hat{P} , simplex, $\Pi_1 = \hat{P}e^{-i\pi J_{\chi}}$ and $\Pi_2\Gamma$ with $\Pi_2 = \hat{P}e^{-i\pi J_{\chi}}$ and Γ the time reversal operator. The basis is symmetrized in such a way:

$$\Pi_1 c_k^{\dagger} \Pi_1^{\dagger} = +i c_k^{\dagger}, \quad \Pi_1 c_{\bar{k}}^{\dagger} \Pi_1^{\dagger} = -i c_{\bar{k}}^{\dagger}$$
(2)

with k = 1, ..., M and 2M the dimension of the configuration space.

Using Latin indices to distinguish the levels according to their simplex, $\{k, l, m\}$ for simplex +i and $\{\bar{k}, \bar{l}, \bar{m}\}$ for simplex -i. If the intrinsic wave function is an eigenstate of the simplex operator, for a paired even-even nucleus half of the quasiparticle operators α^{\dagger}_{μ} , have simplex +i and the other half have simplex -i.

$$\alpha_{m}^{\dagger} = \sum_{k=1}^{M} U_{km}^{\dagger} c_{k}^{\dagger} + V_{km}^{\dagger} c_{\bar{k}}$$

$$\alpha_{\bar{m}}^{\dagger} = \sum_{k=1}^{M} U_{km}^{-} c_{\bar{k}}^{\dagger} + V_{km}^{-} c_{k}$$
(3)

with $m = 1, \ldots, M$

The wave function of ground state of an even-even nuclei:

$$|\phi\rangle = \prod_{\mu=1}^{2M} \alpha_{\mu} |-\rangle \tag{4}$$

The quasiparticle vacuum:

$$\alpha_{\mu}|\phi\rangle = 0, \mu = 1, \dots, 2M.$$
(5)

The one quasiparticle excitations (correspond to odd-even nuclei):

$$|\tilde{\phi}\rangle = \alpha^{\dagger}_{\rho_1} |\phi\rangle \tag{6}$$

They can be written as vacuum to the quasiparticle operators $\tilde{\alpha}_{\rho}$,

$$\tilde{\alpha}_{\rho}|\tilde{\phi}\rangle = 0, \rho = 1, \dots, 2M.$$
(7)

 $\{\tilde{\alpha}_{\rho}^{\dagger}\}\$ are obtained from the set $\{\alpha_{\mu}^{\dagger}\}\$ by replacing $\alpha_{\rho_{1}}^{\dagger}$ by $\alpha_{\rho_{1}}$. The simplex state $|\tilde{\phi}\rangle$ is given by $\Pi_{1}|\tilde{\phi}\rangle = i^{n}|\tilde{\phi}\rangle$ $(n = 1 \text{ if } \alpha_{\rho_{1}}^{\dagger} \text{ has simplex } +i \text{ and } n = -1 \text{ if } \alpha_{\rho_{1}}^{\dagger} \text{ has simplex } -i)$. The blocked wave function $|\tilde{\phi}\rangle$ is vacuum to $M_{+} = M - n$ operators $a\tilde{l}\tilde{p}ha_{m}^{\dagger}$ with simplex +i and to $M_{-} = M + n$ operators $\tilde{\alpha}_{m}^{\dagger}$ with simplex -i.

$$\tilde{\alpha}_{m}^{\dagger} = \sum_{k=1}^{M} \tilde{U}_{km}^{\dagger} c_{k}^{\dagger} + \tilde{V}_{km}^{\dagger} c_{\bar{k}}, m = 1, \dots, M_{+},$$

$$\tilde{\alpha}_{\bar{m}}^{\dagger} = \sum_{k=1}^{M} \tilde{U}_{km}^{-} c_{\bar{k}}^{\dagger} + \tilde{V}_{km}^{-} c_{k}, m = 1, \dots, M_{-}.$$
(8)

The matrices $(\tilde{U}^+, \tilde{V}^+, \tilde{U}^-, \tilde{V}^-)$ are obtained from (U^+, V^+, U^-, V^-) by corresponding columns exchange

Constrain calculation:

$$E'[\tilde{\phi}] = \frac{\langle \tilde{\phi} | \hat{H} \hat{P}^{N} | \tilde{\phi} \rangle}{\langle \tilde{\phi} | \hat{P}^{N} | \tilde{\phi} \rangle} - \langle \tilde{\phi} | \lambda_{q_0} \hat{Q}_{20} + \lambda_{q_2} \hat{Q}_{22} | \tilde{\phi} \rangle$$
(9)

Lagrange multipilier $\gamma_{\textbf{q}_0}$ and $\gamma_{\textbf{q}_2}$ being determined by the constraints

$$\langle \tilde{\phi} | \hat{Q}_{20} | \tilde{\phi} \rangle = q_0, \langle \tilde{\phi} | \hat{Q}_{22} | \tilde{\phi} \rangle = q_2$$
 (10)

Theoretical Frame

GCM:

$$\begin{split} |\Psi_{M,\sigma}^{N,l,\pi}(\beta,\gamma)\rangle &= \sum_{K} g_{K\sigma}^{l} P^{N} P_{MK}^{l} |\tilde{\phi}^{\pi}(\beta,\gamma)\rangle \\ &= \sum_{K} g_{K\sigma}^{l} |IMK,\pi,N,(\beta,\gamma)\rangle \end{split}$$
(11)

Reduced Hill-Wheeler-Griffin equation

$$\sum_{K'} (\mathcal{H}_{K,K'}^{N,l,\pi} - E_{\sigma}^{N,l,\pi} \mathcal{N}_{K,K'}^{N,l,\pi}) g_{K'\sigma}^{l} = 0$$
(12)

Hamiltonian and norm overlaps:

$$\mathcal{H}_{K,K'}^{N,I,\pi} = \langle IMK, \pi, N, (\beta, \gamma) | H | IMK', \pi, N, (\beta, \gamma) \rangle$$

$$\mathcal{N}_{K,K'}^{N,I,\pi} = \langle IMK, \pi, N, (\beta, \gamma) | IMK', \pi, N, (\beta, \gamma) \rangle$$
(13)

Energy

$$E_{\sigma}^{N,I,\pi}(\beta,\gamma) = \frac{\langle \Psi_{M,\sigma}^{N,I,\pi}(\beta,\gamma) | H | \Psi_{M,\sigma}^{N,I,\pi}(\beta,\gamma) \rangle}{\langle \Psi_{M,\sigma}^{N,I,\pi}(\beta,\gamma) | \Psi_{M,\sigma}^{N,I,\pi}(\beta,\gamma) \rangle}$$
(14)

The collective wave function

$$G_{K,\sigma}^{J} = \sum_{K'} (\mathcal{N}^{N,I,\pi})_{K,K'}^{1/2} g_{K',\sigma}^{I}$$
(15)

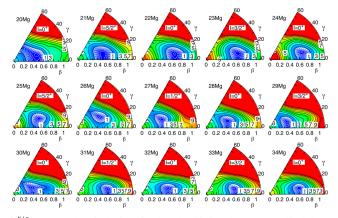


Fig. 1. Contour plots of $\mathbb{F}_{d=0}^{N,l,\pi}(\beta,\gamma)$, see Eq. (13), as a function of (β,γ) for positive parity and for the angular momentum *l* providing the lowest energy. The solid black contour lines start at 1 MeV and increase 1 MeV. The dashed white lines start at zero and increase 0.1 MeV. The zero contour is only present if the minimum is flat enough. The angle γ units are degrees.

Table 1

The 2nd and 3rd columns display the spin and parity and the β , γ deformations of the ground state of the different isotopes. Notice that only ³³MG has a ground state with negative parity. The 4th column shows the experimental β deformation taken from Refs. [42,43]. The 5th column lists the |K| component with the largest weight in the wave function, see Eq. (17), with the percentage of this |K| value in the total wave function. The 6th column provides the theoretical spectroscopic quadrupole moments, in em².

Α	I^{π}	β, γ	β_{exp}	K (%)	Q _{spec}
20	0+	0.46, 17.5°	-	-	-
21	5+2	0.54, 14.9°	-	$\frac{1}{2}(99.1\%)$	-17.80
22	0+	0.65, 12.2°	0.58 (11)	-	-
23	3 ⁺	0.64, 10.9°	-	³ / ₂ (99.9%)	13.89
24	0+	0.65, 12.2°	0.605 (8)	-	-
25	5+2	0.54, 17.5°	-	⁵ / ₂ (99.7%)	22.47
26	0+	0.49, 25.3°	0.482 (10)	-	-
27	$\frac{1}{2}^{+}$	0.41, 23.4°	-	$\frac{1}{2}(100\%)$	0
28	0+	0.46, 17.5°	0.491 (35)	-	-
29	3 ⁺	0.37, 19.1°	-	$\frac{1}{2}(96.0\%)$	-10.71
30	0+	0.39, 21.1°	0.431 (19)	-	-
31	$\frac{1}{2}^{+}$	0.60, 11.7°	-	$\frac{1}{2}(100.0\%)$	0
32	0+	0.54, 14.9°	0.473(43)	-	-
33	3-	0.60, 11.7°	-	³ / ₂ (99.9%)	14.17
34	0+	0.62, 13.0°	0.58(6)	-	-

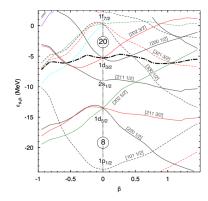


Fig. 2. Single-particle levels of ³⁰Mg for neutrons obtained from the solution of the axially-symmetric HFB equation. The thick dashed lines represent the corresponding Fermi level.

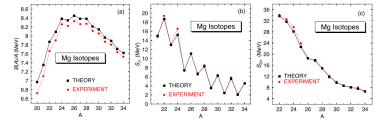


Fig. 3. (a) Binding energy per particle versus de mass number. (b) One-neutron separation energies versus the mass number. (c) Two-neutron separation energies versus the mass number. The experimental values are taken from Ref. [31].

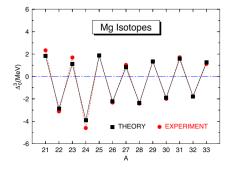


Fig. 4. Odd-even mass differences according to Eq. (18). The experimental data are from Ref. [31].

$$\triangle_0^3(A) = \frac{1}{2}[B(A+1) + B(A-1) - 2B(A)].$$
(16)

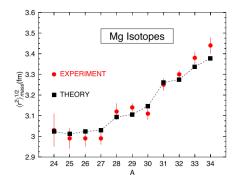


Fig. 5. Radii of the nuclei ^{27–28}Mg in the PNVAP+PNAMP approach. The experimental data are from Ref. [35].

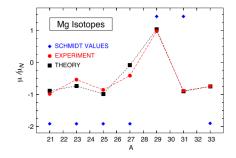


Fig. 6. Magnetic moments of the ground states of the Magnesium isotopes. The experimental results have been taken from the following references: ²¹Mg [41] ²¹Mg, [44,45]. ²³Mg [46], ^{27–31}Mg [47] and ³³Mg [48].

In conclusion, we have presented a novel approach with exact conservation of angular momentum and particle number to describe odd-even nuclei. We have applied this theory to the description of ground-state properties of the Magnesium isotopic chain with the effective Gogny force. The results are in very good agreement with the experimental bulk properties, energy gaps and electromagnetic moments.