

A Brief Introduction to Nuclear Short-Range Correlations

CCWang, Journal Club @2316 10/17/2022

Contents

Short-Range Correlation (SRC)

References

RevModPhys89(2017)045002 O. Hen, G A Miller, E. Piasetzky, *et al.*

1.Experimental aspects on SRC

2.Theoretical aspects on SRC

Nat578(2020)540 A. Schmidt, *et al.*

> NatPhys17(2021)306–310 R. Cruz-Torres, *et al.*

3.Summary

1 **Experimental aspects on SRC: Kinetic variables/ Bjorken scaling/ hard reactions**

$$
p^2 = (p+q)^2 = M^2
$$

$$
2pq = -q^2 = Q^2 > 0
$$

$$
p = (E_{\text{miss}}, p_{\text{miss}}) \approx (x_E
$$

$$
x_B = \frac{Q^2}{2M\nu}
$$

Deep inelastic scattering (DIS) *N* (*e*, *e'*) Hardrons: $0.35 < x_B < 0.75$ **Inclusive scattering** $A(e,e') A^*$: 1.5 < x_B < 2 **Exclusive scattering** $A(e,e'N) A - 1$, $A(e,e'2N) A - 2$ **CLAS Jefferson Lab**

N3LO (600 MeV

 0.7 0.8 0.9 ρ_{miss} (GeV/c)

¹²C(p , 2 pn) events from BNL

1 **Experimental aspects on SRC: exclusive scattering**¹²C(*e*, *e'pp*) events from JLab

nucleon-nucleon interaction in the measured momentum range. The pie chart on the right illustrates our understanding of the structure of ¹²C, composed of 80% mean-field nucleons and 20% SRC pairs, where the latter is composed of \sim 90% *n p*-SRC pairs and 5% *p p* and nn SRC pairs each. Adapted from Subedi et al., 2008.

1 **Experimental aspects on SRC: exclusive scattering**

As a result, we can expand the (e, e') cross section into pieces due to electrons scattering from mechons in two-, threeand more-nucleon SRCs (Frankfurt and Strikman, 1981, 1988; Frankfurt et al., 1993)

$$
\sigma(x_B, Q^2) = \sum_{j=2}^{A} a_j(A) \sigma_j(x_B, Q^2), \qquad (14)
$$

where $\sigma_i(x_B, Q^2) = 0$ for $x_B > j$ and the $\{a_i(A)\}\$ are proportional to the probability of finding a nucleon in a *j*-nucleon cluster. This is analogous to treating the nuclear structure in

$$
a_2(A) = \frac{2}{A} \frac{\sigma_A(x_B, Q^2)}{\sigma_d(x_B, Q^2)}.
$$

This approximation should be valid for $1.5 \le x_B \le 2$.

(Plateau) Confirm the validity of expansion (14).

 $(\sigma_2$ dominance) Higher body correlations $\sigma_{j\geq 3}$ are relatively small.

Inclusive per nucleon cross-section ratios of nuclei to deuterium at $Q^2 = 2.7$ GeV².

1 **Experimental aspects: EMC effect**

European Muon Collaboration (EMC)

Jefferson Lab (Seely et al., 2009).

 dR/dx measures the EMC effect.

SRC & EMC effect: correlation

...

2 **Theoretical aspects: Variational Monte Carlo (VMC) methods**

PhysRevLett98(2007)132501 R. Schiavilla, *et al.*

PhysRevC89(2014)024305 R. B. Wiringa, *et al.*

PhysRevC96(2017)024326 D. Lonardoni, *et al.*

PhysRevLett120(2018)122502 D. Lonardoni, *et al.*

NatPhys17(2021)306–310 R. Cruz-Torres, *et al.*

Hamiltonian Model: Argonne *v*18 (2N)+ Urbana/Illinois (3N)

$$
H = -\frac{\hbar^2}{2m} \sum_{i} \nabla_i^2 + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}
$$

$$
v_{ij} = \sum_{p=1} v^{p}(r_{ij}) \mathcal{O}_{ij}^{p}
$$

$$
V_{ijk} = V_{ijk}^{2\pi, A} + V_{ijk}^{2\pi, C} + V_{ijk}^{R}.
$$

Few/Many-Body methods: VMC

$$
|\Psi_V\rangle = \left(1 + \sum_{i < j < k} U_{ijk}\right) \left[\mathcal{S} \prod_{i < j} \left(1 + U_{ij}^{2-6}\right) \right] \left[1 + \sum_{i < j} U_{ij}^{7-8}\right] |\Psi_J\rangle \qquad |\Psi_J\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] \mathcal{A} |\Phi\rangle
$$

$$
E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \geqslant E_0
$$

2 **Theoretical aspects: Calculation of SRG, MC integration**

On-body density: $\rho(\mathbf{x}) = \frac{1}{A} \left\langle \Psi | \sum_{i=1}^{A} \delta(\mathbf{x} - \mathbf{x}_i) | \Psi \right\rangle$ R-space

Two-body density: $\rho^{(2)}(x,y) = \frac{1}{A(A-1)} \langle \Psi | \sum_{i \neq i} \delta(x-x_i) \delta(y-y_j) | \Psi \rangle$.

Two-body pair with relative distance r .

$$
\rho_{2,1}(r) \equiv \frac{1}{4\pi r^2 A} \langle \Psi | \sum_{i \neq j} \delta(r - |\mathbf{r}_i - \mathbf{r}_j|) \Psi \rangle = \int d^3 R \rho_2(\mathbf{R} + \mathbf{r}/2, \mathbf{R} - \mathbf{r}/2),
$$

Probability for a nucleon having momentum k: $n(\mathbf{k}) = \frac{1}{A} \langle \Psi | \sum_{i=1}^{n} \delta(\mathbf{k} - \mathbf{k}_i) | \Psi \rangle$. total momentum of K and a relative momentum κ :

$$
n_2(\mathbf{K}, \kappa) = \frac{1}{A(A-1)} \left\langle \Psi | \sum_{i \neq j} \delta(\mathbf{K}/2 + \kappa - \mathbf{k}_i) \right\rangle \quad \delta(\mathbf{K}/2 - \kappa - \mathbf{k}_j) | \Psi \right\rangle
$$

$$
n_{2,1}(\kappa) \equiv \int d^3 K n_2(\mathbf{K}, \kappa) = \frac{2}{A(A-1)} \left\langle \Psi | \sum_{i \neq j} \delta(\mathbf{k}_i - \mathbf{k}_j - 2\kappa) | \Psi \right\rangle
$$
 Q-space

- **(a-d) Similarities of the different distributions at** *r* **≤ 1 for all values of** *R***, manifesting the existence of short-distance factorization.**
- **(e-f) Scale & scheme (MODEL) dependence on predictions of two-body density & wave functions (WF), BUT universal factorization of different short-distance WFs.**

Theoretical aspects: Q-space results

- **(Left) Pair ratio in various nuclei.**
- **(Right) Manifestation of tensor force effect** (contacts are divided by *A*/2 and multiplied by 100).

2 **Theoretical aspects: SRC & core of nuclear interaction**

At the high- Q^2 kinematics of our measurement, the differential $A(e, e'p)$ nucleon knockout cross-sections can be approximately factorized as $14,21$

$$
\frac{d^6 \sigma}{d\Omega_{\mathbf{k'}} d\varepsilon'_k d\Omega_{\mathbf{p}_N} d\varepsilon_N} = p_N \varepsilon_N \sigma_{ep} S(\mathbf{p}_i, \varepsilon_i)
$$
(1)

where $\Omega_{\mathbf{k}}$ and $\Omega_{\mathbf{p}}$ are the scattered electron and knockout proton solid angles, $\mathbf{k}'(\mathbf{p}_N)$ and $\epsilon'_k(\epsilon_N)$ are the final electron (proton) momentum and energy, σ_{en} is the off-shell electron-proton cross-section²¹ and $S(\mathbf{p}_i, \epsilon_i)$ is the nuclear spectral function that defines the probability for finding a nucleon in the nucleus with²² momentum \mathbf{p}_i and energy ϵ_i .

$$
S_{\rm p}(\mathbf{p}, \epsilon) = \frac{1}{\mathcal{A}} \sum_{i} \langle \Psi | \delta_{\rm p}(\mathbf{p}_i - \mathbf{p}) \delta_{\rm p}(\epsilon_i - \epsilon) | \Psi \rangle
$$

formalism (GCF)²²⁻²⁵ which assumes that at very high momenta, the nuclear wavefunction can be described as consisting of an SRC pair and a residual $A-2$ system. The abundance of SRC pairs is given by nuclear contact terms extracted from ab initio many-body calculations of pair momentum distributions^{24,25}.

Therefore, in the GCF, the high-momentum proton spectral function of equation (1) is approximated by a sum over pp and pn SRC pairs, which enables the calculation of the cross-sections of $(e, e'p)$ and $(e, e'pp)$ using different nuclear interaction models as input^{13,22}.

$$
|\Psi\rangle = |\Psi_{A-2}\rangle |\rho_{\rm pN}\rangle
$$

(a) measured & calculated (*e*, *e*′*pp*)/(*e*, *e*′*p*) event ratio as a function of p_{miss} for carbon, aluminium, iron and lead.

At high momenta all calculations predict a pp SRC pair fraction of about 1/3 (Extended Data Fig. 6c), which is equal to the scalar limit

(b) Experimental results vs. theoretical calculation of ¹²C (nucleus independent).

2 **Theoretical aspects: SRC & core of nuclear interaction, cont'd**

As the relative momentum between two nucleons increases, a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force.

The results provide strong support for the use of point-like nucleons with effective interactions for modelling atomic nuclei and dense astrophysical systems such as neutron stars, the outer core of which exceeds the nuclear saturation density under current models.

Summary: the physical pictures

Thank you for your attentions!