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Symmetry violation
symmetry violation

An important conservation formula
SHS™ = H (1.1)

where S, H are the symmetry operator and Hamiltonian,respectively, the
former such as P, T so on. And of course you could argue that if some
operator is commutative to the Hamiltonian then that quantity is
conserved, that the Hamiltonian has some kind of symmetry.One of the
most typical examples is parity conservation, but this case is not true for
weak interactions that is parity breaking. So

SHS™' #H (1.2)
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Symmetry violation

symmetry violation

Through the experiment of ®°Co’s 3 decay to compare the distribution
of electrons and photons with different spins, if the proportion in the
same spin direction is the same, it can be concluded that the parity of
weak interaction is conserved, but if there is a counterexample, Yang
Zhenning and Li Zhengdao's hypothesis is correct.

Mirror plane
Original Mirror-reversed
arrangement arrangement
I !
" Predicted direction
Preferred direction of beta emission if
of beta ray emision parity were conserved

Cobalt-60
nuclei

| Observed direction

Direction of electron L of beta emission in

flow through the /| mirror-reversed
solenoid coils || arrangement

Ja Bt Schiff moment



Symmetry violation

HORTLY after the suggestion by Lee and Yang!
that parity (P) is not conserved in weak inter-
actions, Landau? pointed out that invariance under the
combined operation CP of charge conjugation (C) and
parity is needed to rule out the existence of static elec-
tric dipole moments of elementary particles. While o )
there is ample evidence that the weak interactions are = Sl i S

| Electron Positron
invariant under P IROTGRIR R,

invariant under CP.3

imply invariance under time reversal (T). However,

Antihydrogen

Hydrogen

CPT =1 (1.3)

According to the conservation of
CPT, hydrogen atoms obey the
same laws of physics as
antihydrogen atoms in a mirror that
travel backwards in time.
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Electric dipole moment (EDM)

® EDM measures the polarity of a charged system, d= ¥iqit:

® For a hadron or any elementary particle at rest, d=d Iz_l
® Hamiltonian for a dipole interacting with an electric field

(%1
.

Hogm = —d - F = —d

151

® EDM leads to P and T(CP) odd interactions
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Abstract
abstract

The possibility of measuring a very small nuclear electric dipole moment
is explored by calculating the interaction of this moment with an external
electric field. It is shown that for a quantum system of point, charged,
electric dipoles in an external electrostatic potential of arbitrary form,
there is complete shielding; i.e.,there is no term in the interaction energy
that is of first order in the electric dipole moments, regardless of the
magnitude of the external potential. This is true even if the particles are
of finite size, provided that the charge and dipole moment of each have
the same spatial distribution. Relativistic and second-order effects are
uninterestingly small. There is, however, a first-order interaction if the
charge and moment distributions are diferent, and also for a point electric
dipole if it also carries a magnetic dipole moment. Explicit calculations of
both effects are given for hydrogen and helium atoms. It is found that
the effective electric field at a He® nucleus arising from the magnetic
dipole effect is about a hundred times that arising from the finite size
effect, and is roughly 10~7 times the external electric field.
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Introduction
Introduction

@ However, observations on the correlation between the neutron spin
vector and the proton and electron momentum vectors in the decay
of polarized neutrons leave open the possibility of an appreciable
breakdown of T invariance, and other kinds of experiments do not
appear to restrict this possibility significantly.

@ Thus, it is worthwhile to consider attempting the measurement of a
nuclear electric dipole moment, or indeed of any "odd" nuclear
moment (magnetic monopole or quadrupole, electric octupole, etc.).

@ Measurement of higher "odd” moments is subject to the following
general difficulty. The environmental electric field must be made
exceedingly small in comparison with the magnetic field of the same
symmetry, and both this electric field and the electric quadrupole
moment must be known with great accuracy.
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Introduction

@ The measurement of an electric dipole moment in the presence of a
much larger magnetic dipole moment is relatively favorable.Smith,
Purcell, and Ramsey’ attempted to measure the change in the
precession frequency of neutrons in a weak uniform magnetic field
when a strong uniform electric field was superposed parallel to the
magnetic field.

@ They found that if the neutron electric dipole moment is written as
e = eD, where e is the electronic charge, then D < 10=2¢m

@ The remainder of this paper is devoted to a discussion of the extent
to which a nuclear electric dipole moment can be made to interact
with an externally applied electric field.
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Introduction

A simple classical argument also shows that it is not
helpful to use a time-dependent electric field. The
equation of motion of the angular momentum vector
J of a classical electric dipole u in an electric field E is
dJ/dt=uXE. Now we can put u=eD, where D is prob-
ably less than 5X10~% cm, so that for any reasonable
value of E, the precession period will be very long. Thus
we can assume that u is nearly fixed in space, say along
the 2 axis, and calculate the rotation of u, and hence of
the parallel vector J, about the x and y axes. The angu-
lar velocity about the x axis is df,/dt=—uE,/J, and
thereis a similar relation for the rotation about the y axis.
The x component of the acceleration of the nucleus, of
charge Ze and mass A M, is given by dv,/dt=ZeE,/AM.
Thus A8,= —uAMAv,/JZe=— (vA/IZ)(Av,/c), where
we have put J=1I7% and expressed D as a multiple v of
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Theoretical framework

The nonrelativistic Hamiltonian for a system of particle of finite size, with mass m;,
charge e;,electric dipole moment d;,and center-of-mass coordinate r; in an external
electric potential ¢(r),may can be written:

H=T+Vo+V+U+W (4.1)

where

T = —Z (4.2)

2m,

Plc( Pjc ) 3
V( = i d 4.3
= T eef//\,,_,ﬁ,_,,‘ r (4.3)

) i>j

Vo= e /Pic(r)¢(rf +rd’r (4.4)
i—rtr—v ’ ’
D) DL //ﬁﬂw(r)ﬂﬂw(f )drd®r’ (4.5)
i
wo= > di V:'/P:'i\/l('r)<15(f:' +r)d’r (4.6)

Direct dipole-dipole interaction terms, of order 3,-, c_i; have been neglected. The
charge and dipole moment distribution functions, p;c and p;y, are normalized to unit
volume integral.
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Theoretical framework

We define the infinitesimal displace operator
1
=—>) d; p; 4.7
Q e,-hz,: P (4.7)

where p; is the momentum operator for the ith particle.lt is easily seen
that Q commutes with T, and that

iR,V =U, iQ V=W (4.8)

where U’' and W'are the same as U and Wexcept that pjy is replaced by
pic. Thus, if we call the Hamiltonian in the absence of dipole moments

H=T+W+V (4.9)
and
H=Hy+i[Q,H+ AU+ AW, AU=U -UAMW=W —W

In the remainder of this section we shall assume that pjc = pim, so that
AU =AW = 0. It shows that H is the same as Ho except for the
displacement of each particle by the vector % provided that these

vectors are regarded as being infinitesimal. This is in agreement with the
classical view of a charged dipole.
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— for a neutral system made up of point charged particles which
interact electrostatically with each other and with an arbitrary external
field, the shielding is complete (Schiff, 1963):

(E)|on any g = (Eext + Eint)|on any g = 0,

There is no any way to “feel” nuclear EDM since:

<_dN (Eext + Eint)) =0

Ja Bt Schiff moment



Theoretical framework

where 8p is the correction to the charge density necessitated
by the P- or T-odd interaction. If, however, a neutral atom or
molecule is regarded as a system of FiiliKSIPESIES with
Coulomb interaction then, even though the nucleus has an
EDM, the total dipole moment of the system is zero in accor-
dance FiflISCHNSNSIENONMINSOEH . ° (A detailed analy-
sis of a number of problems connected with this theorem can
be found, e.g., in Khriplovich’s book?’.) It was noted in Ref.
26, however, that this hindrance is lifted, in particular, when
the NEEINSASIGNE of the nucleus are taken into account. It
was shown subsequently®® that it is precisely this effect
which is the main cause of violation of Schiff’s theorem in
heavy atoms and molecules. The Schiff hindrance reduces to
the fact that the P- and T-odd potentials of the nucleus must
be written in the form

59 (R)=e jilel(:—)_fl @ | Mr)dr, (22)
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It can also be written in terms of the finite displacement operator €@ by
subtracting out the higher order terms

H:e@Hw”Q+%mJQJm+~~ (4.10)

As are the neglected dipole-dipole terms, the first order in the 3;, the
eigenfunctions upof Hp, which satisfy the Schrodinger equation

Houp = E,u, (4.11)

determine in a simple way the eigenfunctions e’@u,of H, which satisfy the
Schrodinger equation

H ePu, = E,e®u, (4.12)

We conclude that this is also true of the eigenvalues of the above
equation, so that there is no interaction energy of first order in the dipole
moments. This result depends on the assumption that the charge and
moment distribution functions are the same, but is valid for an external
potential of arbitrary form and magnitude.
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Theoretical framework

SECOND-ORDER INTERACTION FOR A POINT ELECTRIC DIPOLE

For simplicity, we restrict ourselves in this section to a signal point dipole of mass my,
charge e, electric dipole moment d = d&, and a number of point charge describe by
m;, e, ri. We choose a dipole of spin % for definiteness,so that the components of &
are the Pauli spin matrices. Proof:

2

Se.[0. vl = Za(E xp) (413)

Where V = ey)(F), so that

[Q. V1= 1[d- 5Pl = 1 d - (-inGp() = i d- V() = —w  (414)
and

Q@ VIl = — [d-5.d-Fu(A)] = —p; [d- 5.3 po(0)] (415)
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Theoretical framework

We define the relationship,E = i v Y= —iﬁ%}-so

1 .-
[d-p d~/31/1(7)]—eoh

e0h2 ’
id® L a Lo =
= —=(@-p)-(7-E) = (-E)-(7-p)l =2—_=5-(E x p) (4.16)
60ﬁ €0

where we use (7 A)-(7-B)=A-B
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Theoretical framework

FIRST-ORDER INTERACTION FOR ELECTRIC DIPOLES OF FINITE
SIZE

We have
H=Hy+i[Q,H]+ AU+ AW (4.17)

We no longer assume that pjc(r) = pim(r), but define the difference
distribution function

pi(P) = pic(F) — pina(P) (4.18)
Since pjc(F)and pinm(F) are normalized, the volume integral of p; is zero.
It is sufficient for the experimental situation to regard the electric field as
uniform, in which case AW = 0. Further, the particles may be assumed
to be small in comparison with their mean separations, so that we need

calculate only the leading term in a power series of the ratio of size to
separation. Thus in the expression for AU,

AU = _Zzeiaj'/(fa’—f)ﬂj(f) <|ry—r|7dr, rmy=r—1

i#]
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Theoretical framework

where p;(¥) is the dipole moment distribution function and can be

normalized to unit volume integral, Z represent a symmetry axis for p(7),
O; is the center of dipole moment, i represent charge.

Ja Bt Schiff moment



Derivation:

I
i#j

where,m = 0 in axisymmetric case,
p(r) = fi(r)Pi(cosx) (4.20)
I

where x is the angle between 7 and (), the latter is parallel to the &,
axis of symmetry. First we can proof

vt = @2isl4a?) !
|7 — 7ol Tox - oy Toz Vx=x)2+(y —y0)2 + (z — 20)2
)
= - 4.21
F=hP (4.21)

(AU) :ZZe;(E‘/jf/p(r)ﬁ?_l_, dr (4.22)

i#
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Theoretical framework

We use Legendre's generating function, the references is from "zeng jin
yan Quantum Mechanics volume I" page 528

1 72 ( )’P,(cos 0), r<rj
T r’J rJ 0 is the angle between 7 and ;.
/ 72 ( )’P,(cosﬁ) r>rj
If r <r,
—- Y el [s = T Y ald)
i#J i#]
where

- 1
S = é'z-/p(r)V S—’ L
|7 — T
Based on the addition theorem of the spherical harmonics

/
Pi(cosfia) = 3 Y01, 01) Vi (02, 02)

m=—/

where m = 0 because of the orthogonality.



Theoretical framework

We know from the above that S can be expanded

S

/p(r)v 1 - /J,(r)P,/(cosx)[V Z )P,(coso)]dr

Y;(60)Y;(x)]dr?
pRiETI 1(60) Yi(x)]dr

[ 0)Pu(eos 9 -3 (5 o
i

1 4m -
= a5 [ P cos )T Vil
ij !

Making use of the spherical component of V in terms of polar basis we can get,where
we reference the " Quantum Theory of Angular Momentum” page 8,18 and 147.

VoY) = [T i) (423)

Virr'Yio(x) = AYi_141(x) (4.24)

where the Vg along z axis. In addition, the orthogonality relation

/ Yie1,4100 Yr,0(x)d2 = 0 (4.25)
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Theoretical framework

so that we get

1 4m = 3
5= 3 57470 [ 5P (cos T Vil

12(21 +1) / ,

=g- Y; (6 Py ( = Ty, )dQ fi 14

€ ”2,2/+1 I 0)/ r(cos )y Tpr=gy V-ol) ir)( r,J) ’

. 1221+ 1
=é, - Z - )) Y,(cos@o)/P,/(cosx)Y, 1,0(x) dQ/ J,(r)( )Hldr

n

- 12(21+1) /2l +

=& - %: TR \/7 i 1 (cos o) / Y)ro(cos x) Yi—1,0(cos x)

dQ/ fa(r)( ’+1d _22/ [1Pi(cos 00)3y - 1/ Fi(r)(—)+ dr

/4 rij

2 4m I'+2
_ eZ/: e +1)P,/+1(c0590)/ (- ) dr

And at the end we can get,where 0p is the angle between €; and 7j;,

_ ZZ e,-(dj) Z 2/47—7‘:1(/ + 1)P/+1(COS 00) /Orij G/(r)(é)l+2dr (4.26)

i#j
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Theoretical framework

With the same thing if r > r,-j

s /p(r)v — /6/(r)P,/(cosx)[V Z( 751 Py (cos 0)]dr?

4 -
= Y 5V [ Py (eos T VGl
!

and
i I+1)221+1) _,_
Vor 7' Yp(x) = - % = 2Yi0(x) (4.27)
Varr 7o) = AV (4.28)
So

S—a. Y (I+1)2(21+1) [@I+1) | 4«
=_&,.
2l +1 (2 +3) ar \2r+1

oo
P,(cos@o)/Y,zo(cosx)Y,+17o(cosx)dQ/

rij

() () dr

oo ry
T (cos 6o0)dy /+1/ ’5"(’)(;.}.) dr

" ij
4 o =)
=—&- Z 41 I"Pyr_1(cos o) / fu(r ) dr
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Last,it is also represented by the same index,

i# 2l+ [(1+ 1)P/+1(C0500)/ jl(r)( )szr

~IP,_1(cos 6o) / ﬂ,(r)(;)/_ldr] (4.29)
r,'j U

where (u;) is the magnitude of the vector (u;). If the
zero-field eigenfunction of T4V, is spherically sym-
metric, V] will introduce a P;-type dependence on the
angle between r;; and E, so that only the P;(cosf)
terms in Eq. (12) will contribute. Thus only f; and
fj2 appear in the spin-field interaction.!®* Numerical
results based on Eq. (12) will be presented in Sec. VII.
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Eq. (12) that contributes to the spin-field interaction is

4melu) cosé)[/r1 (r/n)’fu(r)dr—/ (2r1/5r)f2(7)dr:| .
0 -
(16)

The expectation value of (16) with the wave function
(15) is readily calculated to be

The expectation value of (AU) given by Eq. (12)
easily calculated for a hydrogen atom in its grour
state. In Eq. (12), we put (u;)=(u) for the nucleu
e;=—e¢ for the electron, and r;;=r; for the vector fro: We have made use of the fact that /i* r*fo(r)dr=0
nucleus to electron. The normalized wave functio: since the volume integral of (11) is zero, and have also

. . ., assumed that the spatial extent of fo and f» is much
correct to first order in V, has been given by Kotani smaller than ao. The expression (17) may be written in

terms of moments of the difference distribution function
wo= (ra) b/ *[1— (r1-E/2¢) (r1+2a0)], o(r) given by Egs. (9) and (11):

ao=r/me*. (1

(16x/302) () E) / LA+ /25 i Mr. (1T)

Re= / 12Py(cos)p@)dr= (dn/20+1) / AL

Thus the spin-field interaction energy is

[4(w)-E)/3ac?][Ro*+4R"]. (18)
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Results

Recent experiments of Collard ef ¢2.'® in which high
energy electrons are scattered from He?, give 1.97 X108
cm for the root-mean-square (rms) radius of the charge
density of the He® nucleus, and 1.69X 107 cm for the
rms radius of the magnetic moment density. If it is
assumed that whatever electric dipole moment is
present is distributed in the same way as the magnetic
dipole moment, then

R?=[(1.97)2— (1.69)%]X 1026 cm?=1.02X 10726 cm?.

Nothing is known of R, and it may safely be presumed
to be negligibly small. We thus expect the spm—ﬁeld
interaction energy in He® that arises from
size of the nucleus to be roughly equal to

For helium, we use the approximate wave function
(19) with Z=27/16. In (14), e, must now be replaced
by 2e, and p= —pi—ps; there are, however, no cross
terms between the =1 and ¢=2 parts of the expectation
value of (14). The interaction then turns out to be
372 times the hydrogen value (20). With k= —2.127 for
He?, the spin-field interaction energy is roughly equal
to —1.5X10~7({u)- E), or about a hundred times larger
than the finite size effect.
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From a classical point of view, there can be no
average electric field at the nucleus unless some non-
electric force is available to keep the nucleus from
accelerating under the influence of this electric field. In
the finite size effect, this force is supplied by the non-
electric interactions between nucleons and mesons.
These give the nucleus a finite size, and make it pos-
sible for whatever electric dipole moment it may possess
to be in a region where the electric field is not exactly
ZEero.

If the parameter vy of Sec. I'is 10~7 and E is 10° V/cm,
the precession rate of He® nuclei caused by the magnetic
moment effect is roughly half a degree per day. It

seems possible that considerably smaller precession
rates can be measured.?

P
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Schiff Moment Derivation (part I)

The atomic Hamiltonian in the uniform external field Eext
HAtom = HEIectrons + HNucIeus + Z ( ed) r/) + er, ext) dNEexh

where ®(F) is the nuclear electrostatic potential, dy is nuclear EDM
Let’s use the following unitary transformation
H,&tom - eiUI:IAtome_iU ~ I:IAtom + 1[07 I:IAtorn]

with U taken as ( note that (HN) below is not a operator)

o (dw)
U—z—

v

ﬂMN

we exclude the nuclear electric dipole moment from Ha,m completely.
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Schiff Moment Derivation (part Il)

The net E-field on the nucleus vanishes on average:

z
iU, Flacom] = <d~>< 22 o(7) ) = () (Bext + Eue elecrons )

The new “rotated” Hamiltonian Ay, =~ Fatom + i[U, Aawom] Will have
two terms: the first vanishes

(NI ((d) — div) B IN) =0,

the second one gives the following effective potential

(N| — ed(F) — %(8,\,)%0) IN) = _% — 47e8V(7) + ...
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Schiff Moment Derivation (part lll)

Hyper-virial theorem: on average, a neutral atom, placed in the
uniform external electric field, does not move. It means that, on
average, total electric field acting on every charge inside the atomic
system should vanish

Schiff moment: the first non-vanishing dipole term

S = T / (x X — = <x2)Ch Xk — Okk,)xk,) p(X)d®x
The Schiff moment produces the P, T-odd electrostatic potential
h(F) = 4z 8 - V(F)

that induces the atomic EDM

0o (r)d°r

¢ Sp(r)dr
o (R)=e j _IW’

1
Al
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