Metastable States of 92,94Se: Identification of an Oblate K Isomer of ⁹⁴Se and the Ground State Shape Transition between N = 58 and 60

C. Lizarazo *et.al.*,

Journal Club, October 31 st @ Zhuhai, Guangdong

Nuclear isomers

"The existence of isotopic isobars (same-*Z*, same-*A*), with clearly distinguishable properties such as different radioactive half periods, was anticipated in 1917 when Soddy proposed that such nuclei be called *isomers* if and when found." *Evans, 1955*

"An excited nuclear state which endures long enough to have a directly measurable lifetime is called an isomeric state." Bethe, 1956

Rule of thumb: *τ* **> 1ns**

Types of isomers

- **O** A secondary energy minimum **at large isomers**
 a A secondary energy minimum

at large elongation.
- Fission isomers in heavy nuclei,
such as ²⁴²Am.
 such as ²⁴²Am.
- Elongated such that its majorto-minor axis ratio is about 2:1 [14] The matrix of the same relationship of the same relationship of the same r
- \Box Decay back to the ground state competes with fission. Shape elongation

Types of isomers

Spin trap

 The decay path to lower energy states requires a large change in nuclear spin, and therefore the emission of radiation with a high
multipolarity $\lambda = \Delta I$
 \overline{Q} multipolarity $\lambda = \Delta I$

180mTa case: g.s.: 1+, isomer: 9-, $\lambda=8, E_x=7$ $T_{1/2}$ (g.s.) = 8.154 h
 $T_{1/2}$ (9⁻) > 7.1 × 10¹⁵ a

In spherical or near-spherical nuclei.

Types of isomers

- □ A special spin trap depends on spin's orientation.
- \Box K represents the projection of the otal nuclear spin along the
symmetric axis of the nucleus.
180mHf case:

180mHf case:

isomer: $I = 8$, $K = 8$, at 1.1 MeV probable decay to $I = 8$, $K = 0$ state

$$
\Delta K = 8, \lambda = 0, f = \Delta K - \lambda = 8
$$

$$
\blacksquare \qquad T_{1/2} (8^-) = 5.5 \text{ h}
$$

Spin projection

Motivation

Figure 2 Chart of atomic nucleic, as a function of neutron number (N) and proton number (Z) . Naturally occurring isotopes are represented by blue squares. The straight lines are drawn for the 'magic numbers' that correspond to closed shells (and spherical shapes). The other symbols indicate isomers with excitation energies greater than 1 MeV and long half-lives: red circles for >1 ms, and black squares for $>$ 1 hour. The data are taken from refs. 4, 10, 11.

Making spin traps

Bombarding heavy, deformed, target nuclei, such as ¹⁸⁰Hf with heavy, deformed, projectile nuclei, such as ²³⁸U

Nucleons can also be exchanged, so that states in adjacent nuclei may also be reached.

Motivation

The purpose of this Paper: presents new information on the shape evolution of the very neutron-rich ^{92,94}Se nuclei from an isomer-decay spectroscopy experiment.

- The isomeric levels are interpreted as originating from high-*K* quasineutron states with an oblate deformation of *β* ∼ 0.25. Highlights:
 a The isomeric levels are interpreted as or

quasineutron states with an oblate defo
 a ⁹⁴Se is the **lowest-mass** neutron-rich nuc

substantial *K* hindrance.
- □ ⁹⁴Se is the **lowest-mass** neutron-rich nucleus known to date with such a
- The first observation of an **oblate K** isomer in a deformed nucleus.

Motivation

Another thing: both triaxial degree of freedom and shape coexistence playing important roles in the description of intrinsic deformations in neutron-rich Se isotopes.

Experiment

Data analysis

For ⁹²Se, *γ* rays detected within 0.19 $\frac{350}{200}$ (a) $\frac{92}{5}$ (e) $\frac{62}{5}$

 $\le t_y \le 70$ *μ*s were used.
A spectrum of events with $t_y \ge 70$ *μ*s $\sum_{\substack{0 \le x \le 200 \ 150}}^{300}$
was scaled and subtracted to further was scaled and subtracted to further reduce the environmental background component.

exponential decay curve plus a $\frac{5}{8}$ $\frac{20}{8}$ constant baseline.

$$
T_{1/2} = 15.7(7) \ \mu s \text{ in } ^{92}\text{Se}
$$

$$
T_{1/2} = 0.68(5)
$$
 μ s in ⁹⁴Se

Data analysis

Level schemes constructed for 92,94Se

sum checks, *γγ* and $\frac{3072}{3005}$ coincidences, and sums of efficiency corrected intensities.

The average internal conversion coefficient is $\alpha = 3.4(6)$

The 3005- and 3072- $(2_1^+)_{539}$ parity and $\Delta J = 2$ 0_{gs}^+

Data analysis

R. -B. Gerst et. al., PRC 102, 064323 (2020).

Level schemes constructed for ⁹⁴Kr

Why *K* isomers are usually prolate

Example: the configuration of high-*K* isomers in ¹⁷⁸W.

 $K=\Omega_1+\Omega_2$

angular momentum of the broken-pair nucleons

Sum of the projection of angular momentum of the
\nbroken-pair nucleons
\nLarge K
$$
\rightarrow
$$
 K forbidden
\nmetastable isomers
\n
$$
K^{\pi} = 6^{+}: \nu \frac{7}{2} [514] \otimes \nu \frac{5}{2} [512]
$$
\n
$$
K^{\pi} = 8: \nu \frac{9}{2} [624] \otimes \nu \frac{7}{2} [514]
$$
\n
$$
= 10^{+11} \times 10^{+
$$

The Nilsson diagrams obtained by Gogny HFB calculations

 $K^{\pi} = 7^{-}(\nu 11/2^{-}[505] \otimes \nu 3/2^{+}[402])$ $K^{\pi} = 9^{-}(\nu 11/2^{-}[505] \otimes \nu 7/2^{+}[404])$

at oblate deformations of *β* ∼ −0.24

Configuration-constrained PES calculations for high-*K* states

Solve the Shrödinger equation $H_{\text{WS}}\Psi = E_{\text{WS}}\Psi$,

with the Woods-Saxon potential,

$$
H_{\rm WS} = T + V(r, \hat{\beta}) + V_{l \, \cdot \, s}(r, \hat{\beta}) + \frac{1}{2} (1 + \tau_3) V_{\rm c}(r, \hat{\beta}),
$$

where

$$
V(r,\hat{\beta}) = \frac{-V_{00}\left[1 \pm \kappa \frac{N-Z}{N+Z}\right]}{1 + e^{\frac{r-R}{a}}}
$$

Central force

$$
V_{l \cdot s}(r, \hat{\beta}) = \lambda \left(\frac{\hbar}{2Mc}\right)^{2} [\nabla V(r, \hat{\beta}) \times p] \cdot \sigma,
$$

Spin-orbit term

$$
V_c(r, \hat{\beta}) = \frac{Z - 1}{\frac{4}{3}\pi R^3} \int \frac{1}{|r' - r|} d^3r'
$$
 Coulomb term

Configuration-constrained PES calculations for high-*K* states

Pairing treatment: Lipkin-Nogami method

Add a residual pairing interaction to the Hamiltonian

$$
H = H_{sp} - G \sum_{k,k'>0} a_k^{\dagger} a_k^{\dagger} a_{k'} a_{k'}
$$

And the BCS wave function is

$$
|\text{BCS}\rangle = \prod_{k>0} \left(u_k + v_k a_k^{\dagger} a_k^{\dagger} \right) |0\rangle
$$

The v_k^2 and u_k^2 represent the probability that a certain pair state is or is not occupied, which has to be determined in such a way that the corresponding energy has a minimum (variational principle).

The should fulfill
$$
2\sum_k v_k^2 = N
$$

The variational Hamiltonian is $H' = H - \lambda N$

But BCS method would collapse if the pairing is too weak. Now we add high order particle-number constraint

$$
\hat{H}_{LN} = \hat{H} - \lambda \hat{N} - \lambda_2 \hat{N}^2
$$

And solve equations iteratively:

$$
N = 2 \sum_{k} v_k^2
$$

\n
$$
\frac{2}{G} = \sum_{k} \frac{1}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}}
$$

\n
$$
\epsilon_k = e_k + (4\lambda_2 - G) v_k^2
$$

\n
$$
v_k^2 = \frac{1}{2} \left[1 - \frac{\epsilon_k - \lambda}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}} \right]
$$

\n
$$
\lambda_2 = \frac{G}{4} \left[\frac{(\Sigma_k u_k^3 v_k)(\Sigma_k u_k v_k^3) - \Sigma_k u_k^4 v_k^4}{(\Sigma_k u_k^2 v_k^2)^2 - \Sigma_k u_k^4 v_k^4} \right]
$$

The expectation value of the total Hamiltonian becomes

$$
E_{LN} = \sum_{k} 2v_k^2 e_k - \frac{\Delta^2}{G} - G \sum_{k} V_k^4 - 4\lambda_2 \sum_{k} (u_k v_k)^2
$$

If we want to create a broken pair, block the i- and j-th single-particle orbitals, make sure that in every iteration the $v_i = 1$, $v_i = 1$. And the LN energy is

$$
E_{LN} = \sum_{j=1}^{S} e_{k_j} + \sum_{k \neq k_j} 2v_k^2 e_k - \frac{\Delta^2}{G} - G \sum_{k \neq k_j} v_k^4 +
$$

$$
G \frac{N - S}{2} - 4\lambda_2 \sum_{k \neq k_j} (u_k v_k)^2 \, .
$$

Using macroscopic-microsopic method, i.e.,

$$
E_{\rm tot} = E_{\rm LDM} + E_{\rm LN} - \tilde{E}_{strut.}
$$

Calculate the energies with different β_2 , β_4 , and γ to get the configurationconstrained PES.

Results given by Configuration-constrained PES

For ⁹²Se: g.s. deformation is **prolate** $K^{\pi} = 7^{-}(\nu 11/2^{-}[505] \otimes \nu 3/2^{+}[402])$ deformation: $(\beta_2, \gamma, \beta_4) = (0.256, 52.9, 0.027)$ $K^{\pi} = 9^{-}(\nu 11/2^{-}[505] \otimes \nu 7/2^{+}[404])$ deformation: $(\beta_2, \gamma, \beta_4) = (0.254, 54.1, 0.021)$

表 1 N=58同中子链中 K" = 9 态激发能与形变参数的计 算结果*

核素	β_2 (基态)	β_2 (激发态)	γ (基态) /(°)	γ(激发态) $/(^{\circ})$	$E_{\rm cal}$ /keV	$E_{\rm exp}$ /keV
${}^{88}Zn$	0.182	0.183	$\boldsymbol{0}$	45	6 0 2 6	
$^{90}\mathrm{Ge}$	0.198	0.196	1	58	3 2 8 6	
$^{92}\mathrm{Se}$	0.208	0.209	$\boldsymbol{0}$	60	3 2 5 5	3 0 7 2
94 Kr	0.253	0.238	$\boldsymbol{0}$	58	3 3 2 2	3 4 4 4
^{96}Sr	0.315	0.206	$\boldsymbol{0}$	60	3853	3 5 2 4
^{98}Zr	0.309	0.199	$\boldsymbol{0}$	57	3 5 2 2	
$^{100}\!{\rm Mo}$	0.202	0.195	35	54	3 3 6 2	
$^{102}\mbox{Ru}$	0.195	0.180	24	$\boldsymbol{0}$	3 3 5 3	
$^{104}\mathrm{Pd}$	0.140	0.164	$\boldsymbol{0}$	20	4 9 8 7	
$^{106}\mathrm{Cd}$	0.127	0.127	$\boldsymbol{0}$	15	5 8 0 9	

Results given by Configuration-constrained PES

For ⁹⁴Se: g.s. deformation is **oblate** $K^{\pi} = 7^{-} (\nu 11/2^{-} [505] \otimes \nu 3/2^{+} [402])$ deformation:

 $(\beta_2, \gamma, \beta_4) = (0.251, 60.0, 0.019)$

表 2 $N=60$ 同中子链中 $K^{\pi} = 7$ 态激发能与形变参数的计 算结果*

核素	β_2 (基态)	β_2 (激发态)	γ (基态) $\sqrt{(\circ)}$	γ (激发态) /(°)	$E_{\rm cal}$ /keV	$E_{\rm exp}$ /keV
^{90}Zn	0.195	0.207	56	47	2 2 5 9	
92 Ge	0.210	0.219	1	41	2 3 5 3	
94 Se	0.239	0.236	58	58	2 4 3 1	2 4 0 0
96 Kr	0.309	0.254	$\boldsymbol{0}$	59	2837	
98 Sr	0.334	0.221	$\boldsymbol{0}$	57	3 7 9 1	
$^{100}\mathrm{Zr}$	0.340	0.213	1	50	3 5 1 1	
$^{102}\!{\rm Mo}$	0.262	0.262	21	15	2 5 7 8	
$^{104}\mbox{Ru}$	0.226	0.233	31	20	2621	
$^{106}\mathrm{Pd}$	0.174	0.188	$\boldsymbol{0}$	$\overline{2}$	1786	
$^{108}\mathrm{Cd}$	0.134	0.159	$\boldsymbol{0}$	1	2 0 4 3	

The rather soft potential energy surface implying that K is a less well-defined quantum number.

More results given by Configuration-constrained PES

A question that hasn't been answered

