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Introduction
The wave function and its energy E are evaluated by solving 
the generalized eigenvalue problem



Introduction
Expansion the deformed wave function in terms of angular-
momentum eigenfunctions

With the relation



Introduction

Finally,

Orthogonality condition:



Introduction

• The computational resource for the projection 
procedure is approximately proportional to the 
number of the sampling points in the quadrature to 
evaluate the integral of Euler angles in the 
projection operator. 

• It is greatly valuable to find an efficient way to 
reduce the number of the points as much as 
possible and to save the computation time in 
various theoretical frameworks containing the 
angular-momentum projection.



Introduction

•The trapezoidal (T) the Gauss-Legendre (GL) quadratures 

trapezoidal

 The minimum number of the Nz for exact quadrature

I_max is the maximum angular momentum contained in the wave function.



Introduction
 Gauss-Legendre quadrature 

This choice of quadrature weights wi and quadrature nodes xi is the unique choice 
that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly.
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 Gauss-Legendre quadrature 
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•A projection method using linear algebra was 
proposed for efficient computation.

C. W. Johnson and K. D. O’Mara, Phys. Rev. C 96, 064304 (2017); 
C. W. Johnson and C. Jiao, J. Phys. G 46, 015101 (2018)



•The Lebedev quadrature: The points of the Lebedev 
quadrature keep the symmetry of octahedral （⼋⾯体）
rotation and inversion(反演), and are distributed almost 
equally on the spherical surface.

Introduction



• For any point on the sphere, there are either 5, 7, 11, 23, or 47 equivalent 
points with respect to the octahedral group, all are included in the grid. 

• All points equivalent under the rotational and inversion group share the same 
weights. 

Introduction

•The smallest such set of points is 
constructed from all six permutations of 
(±1, 0, 0) (collectively denoted as a1), 
leading to an integration scheme

•Grids with two more sets of points, corresponding to the centers and vertices of the 
octahedron



• The points and their weights are determined so that the quadrature is 
exact for any spherical harmonics with degree up to t.

Introduction

•In general, the Lebedev scheme is



https://people.sc.fsu.edu/~jburkardt/datasets/sphere_lebedev_rule/
sphere_lebedev_rule.html
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The model

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00832
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https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00832



The model
• Number of points of the Lebedev quadrature for spherical 

surface against the degree t

• Spherical design (SD) on S2: the sampling points are equally 
distributed on the sphere surface S2 as far as possible

competing performance with the Lebedev method for 
a certain type of integrand functions

C. H. L. Beentjes, Quadrature on a spherical surface, Technical Report, 
Oxford University (2015).

The sampling points and weights for up to 131st-degree polynomial are available.

Lebedev, V. I.; D. N. Laikov (1999). "A quadrature formula for the sphere of the 131st 
algebraic order of accuracy". Doklady Mathematics. 59 (3): 477–481.
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GXPF1A interaction
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GXPF1A interaction
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