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While the angular-momentum projection is a common tool for theoretical nuclear structure stud-
ies, a large amount of computations are required particularly for triaxially deformed states. In the
present work, we clarify the conditions of the exactness of quadratures in the projection method.
For efficient computation, the Lebedev quadrature and spherical t-design are introduced to the
angular-momentum projection. The accuracy of the quadratures is discussed in comparison with the
conventional Gauss-Legendre and trapezoidal quadratures. We found that the Lebedev quadrature
is the most efficient among them and the necessary number of sampling points for the quadrature,
which is often proportional to the computation time, is reduced by a factor 3/2 in comparison with
the conventional method.

https://arxiv.org/pdf/2205.04119.pdf

Computer Physics Communication, in press (2022)



Introduction

R(€?) is the rotation operator as
R(Q) . eijzaeifyﬂeijz'y.
Dy, is the Wigner D-function and is defined as

Diyx(Q) = e dyp(B)e™”
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The wave function and its energy E are evaluated by solving
the generalized eigenvalue problem
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Introduction & THXZ

Expansion the deformed wave function in terms of angular-
momentum eigenfunctions

max

= o Z vik|I, K)

I=0or 3 K=
With the relation

Q)|I,K) = ZD Q)|I,M).

Then, the angular-momentum projected state is

A 2J +1 .
PAJ4K‘¢> = 52 /dQDf/‘,K(Q)

T

max

5 Z UIK’DJI\/.I’K’(Q)‘L M),

I=0or 1 M’ K'=—
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Orthogonality condition:
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Diix () Dy e ()
J+1

= Y (DMK, -M,ILM|J,M — M)
J'=|J—1I]

x (J,—K,I,K'|J',K' — K)D3/_ps xr—xc(Q) (
Finally,

> J,I,J’
PJ{4K|¢> = Z cM’M,,K,K,|I,M')
I.M' K’ J'

2 /dQDl{/}’—M,K’—K(Q)a
where 01{4[]\‘;; k. i are coefficients depending on their in-
dices and vk, and independent of 2. As a consequence,
the integral in Eq. (12) can be performed exactly by using
a quadrature rule with a degree of exactness t = J+ I ax.
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e The computational resource for the projection
procedure is approximately proportional to the
number of the sampling points in the quadrature to
evaluate the integral of Euler angles in the
projection operator.

e It is greatly valuable to find an efficient way to
reduce the number of the points as much as
possible and to save the computation time in
various theoretical frameworks containing the
angular-momentum projection.
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e The trapezoidal (T) the Gauss-Legendre (GL) quadratures

> LT
PJ\{IK|¢> = Z CM,M/,K,K/II, M')
I.M" K’ J'

27T

x/ do e M —M)e
0

X / sinﬂdﬁdﬂ,_M,K/_K(ﬁ)
0

2m
X / dry Pt
0

N

i - i(K'—K)~y 27 i(K'—K)2zm
trapezoidal [ e = L3 S0

m=1

The minimum number of the Nz for exact quadrature
N =1L i

|_max is the maximum angular momentum contained in the wave function.
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Gauss-Legendre quadrature

1 n
—1 i:]' 0.75 1 ' — B - P =P
—P =P =P
2 —1'.-:u» _n"(.'. —|,n’,.'>a:| —|;.:.'- l),lvln n.":.', n.".n n.'T‘. 1.('1n
wz . 2 / 2 ' Number of points, n ‘ P;alnts,x,- Weights, w;
(1 o wz) [Pn (wz)] 1 0 5
2 L +0.57735... 1
/3
8
Wh ere 3 0 5 0.888889...
[3 5
L\/ E +0.774597... N 0.555556...
e nis the number of sample points used, cf2- 2T ommen. BD ogges,
e W;are quadrature weights, and o 22T s BT oums.

e x;are the roots of the nth Legendre polynomial.

This choice of quadrature weights w; and quadrature nodes x; is the unique choice
that allows the quadrature rule to integrate degree 2n — 1 polynomials exactly.
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Gauss-Legendre quadrature

0’ 1
/o sinﬂdﬂdbjg)(ﬂ)z/ d(cos B) Py (cos [3)

-1

where Pj/ is the Legendre polynomial. The degree of
the polynomial is t = J + I,.x at most and the Gauss-
Legendre quadrature is exact if the number of points is
equal to or larger than

Ny = [(t+1)/2]

where [(t 4+ 1)/2] denotes the minimum integer which is
equal to or larger than (¢t 4+ 1)/2 [21]. Thus, the number
of points for the TH+GL+T method is estimated as

1
Nrigrir = N;Ny = (t+1)%[(t +1)/2] = §t3 +0(t%).
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e A projection method using linear algebra was
proposed for efficient computation.

C. W. Johnson and K. D. O’Mara, Phys. Rev. C 96, 064304 (2017);
C. W. Johnson and C. Jiao, J. Phys. G 46, 015101 (2018)
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e The Lebedev quadrature: The points of the Lebedev
quadrature keep the symmetry of octahedral (/\E{%)

rotation and inversion(JzJ&), and are distributed almost
equally on the spherical surface

&
Angular integrals [edit] Sy

—~ %432
Compound of cube and  Each face of the The octahedral group O,
octahedron disdyakis dodecahedron with fundamental domain

The surface integral of a function over the unit sphere, s fundamenal

dod / df) f(2) = /0 ! sin(6)d6 /0 . do £(8, p),

Is approximated in the Lebedev scheme as

where the particular grid points and grid weights are to be determined.
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* For any point on the sphere, there are either 5, 7, 11, 23, or 47 equivalent
points with respect to the octahedral group, all are included in the grid.

* All points equivalent under the rotational and inversion group share the same
weights.

Distinct classes of grid points

e The smallest such set of points is — . ;
. . ypical element Constraint Number of points
constructed from all six permutations of 1
. a (1,0,0) 6
(+1, 0, 0) (collectively denoted as al),
leading to an integration scheme

—

a2 _(17170) 12

3

a (17171) 8

al=S

6
Iglf] = 4 Zf(ai),

@ Grids with two more sets of points, corresponding to the centers and vertices of the

octahedron
6 8

Islf] = A1) f(a})+ A2 ) f(a?) + A3 ) f(ad),

1=1 1 =1

where A4, Ao, and As are the weight functions that still need to be determined.
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® In general, the Lebedev scheme is

In[f] = AlZf +A22f +A32f
N3 48
+ ZBk Zf(bf) + ZCk Zf(cf) + ZDk Zf(df),
=1 i =1 e =1 i

where the total number of points, N, is o L =
Distinct classes of grid points

N = 26 + 24(N1 -1 Nz) + 48 N3. Typical element Constraint Number of points
a' (1,0,0) 6
a’ i(]w 1, 0) 2
V2
a’ i(]w 1l 1) 8
V3
bk (lk,lk,mk) 2lz —+ m% =1 24
¢ | (pr gk, 0) pi+q. =1 24
d" (%, Sk, W) ri+S,3 +Wk2 — 1l 48

e The points and their weights are determined so that the quadrature is
exact for any spherical harmonics with degree up to t.
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e lebedev

e lebedev

e lebedev

003.txt, 6 point rule, precision 3.
005.txt, 14 point rule, precision 5\

e lebedev

007.txt, 26 point rule, precision 7.
009.txt, 38 point rule, precision 9.

e lebedev

011.txt, 50 point rule, precision 11.

e lebedev

013.txt, 74 point rule, precision 13.

e lebedev

015.txt, 86 point rule, precision 15.

e lebedev

017.txt, 110 point rule, precision 17.

e lebedev

019.txt, 146 point rule, precision 19.

e lebedev

021.txt, 170 point rule, precision 21.

e lebedev

023 .txt, 194 point rule, precision 23.

e lebedev

e lebedev

025 .txt, 230 point rule, precision 25.
027.txt, 266 point rule, precision 27.

e lebedev

029.txt, 302 point rule, precision 29.

e lebedev

031 .txt, 350 point rule, precision 31.

e lebedev

035.txt, 434 point rule, precision 35.

e lebedev

041 .txt, 590 point rule, precision 41.

e lebedev

047.txt, 770 point rule, precision 47.

e lebedev

053.txt, 974 point rule, precision 53.

e lebedev

059.txt, 1202 point rule, precision 59.

e lebedev

e lebedev

065 .txt, 1454 point rule, precision 65.
071 .txt, 1730 point rule, precision 71.

e lebedev

077 .txt, 2030 point rule, precision 77.

e lebedev

083.txt, 2354 point rule, precision 83.

e lebedev

089.txt, 2702 point rule, precision 89.

e lebedev

095 .txt, 3074 point rule, precision 95.

e lebedev

101.txt, 3470 point rule, precision 101.

e lebedev

107.txt, 3890 point rule, precision 107.

e lebedev

113.txt, 4334 point rule, precision 113.

e lebedev

119.txt, 4802 point rule, precision 119.

e lebedev

125 .txt, 5294 point rule, precision 125.

e lebedev

https://people.sc.fsu.edu/~jburkardt/datasets/sphere_lebedev rule/

131.txt, 5810 point rule, precision 131.

sphere_lebedev_rule.html

theta_i phi_ i W_i
0.000000000000000 90.000000000000000 0.166666666666667
180.000000000000000 90.000000000000000 0.166666666666667
90.000000000000000 90.000000000000000 0.166666666666667
-90.000000000000000 90.000000000000000 0.166666666666667
90.000000000000000 0.000000000000000 0.166666666666667
90.000000000000000 180.000000000000000 0.166666666666667
0.000000000000000 90.000000000000000 0.009523809523810
180.000000000000000 90.000000000000000 0.009523809523810
90.000000000000000 90.000000000000000 0.009523809523810
-90.000000000000000 90.000000000000000 0.009523809523810
90.000000000000000 0.000000000000000 0.009523809523810
90.000000000000000 180.000000000000000 0.009523809523810
45.000000000000000 54.735610317245346 0.032142857142857
45.000000000000000 125.264389682754654 0.032142857142857
-45.000000000000000 54.735610317245346 0.032142857142857
-45.000000000000000 125.264389682754654 0.032142857142857
135.000000000000000 54.735610317245346 0.032142857142857
135.000000000000000 125.264389682754654 0.032142857142857
-135.000000000000000 54.735610317245346 0.032142857142857
-135.000000000000000 125.264389682754654 0.032142857142857
62.632194841377327 90.000000000000000 0.028571428571429
-62.632194841377327 90.000000000000000 0.028571428571429
117.367805158622687 90.000000000000000 0.028571428571429
-117.367805158622687 90.000000000000000 0.028571428571429
27.367805158622673 90.000000000000000 0.028571428571429
-27.367805158622673 90.000000000000000 0.028571428571429
152.632194841377355 90.000000000000000 0.028571428571429
-152.632194841377355 90.000000000000000 0.028571428571429
0.000000000000000 27.367805158622673 0.028571428571429
0.000000000000000 152.632194841377355 0.028571428571429
180.000000000000000 27.367805158622673 0.028571428571429
180.000000000000000 152.632194841377355 0.028571428571429
0.000000000000000 62.632194841377327 0.028571428571429
0.000000000000000 117.367805158622687 0.028571428571429
180.000000000000000 62.632194841377327 0.028571428571429
180.000000000000000 117.367805158622687 0.028571428571429
90.000000000000000 27.367805158622673 0.028571428571429
90.000000000000000 152.632194841377355 0.028571428571429
-90.000000000000000 27.367805158622673 0.028571428571429
-90.000000000000000 152.632194841377355 0.028571428571429
90.000000000000000 62.632194841377327 0.028571428571429
90.000000000000000 117.367805158622687 0.028571428571429
-90.000000000000000 62.632194841377327 0.028571428571429
-90.000000000000000 117.367805158622687 0.028571428571429
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Efficient Implementation of Variation after Projection Generalized
Hartree—Fock

Patrick ]. Lestrangeﬁ David B. Willia.ms-Youngf Alessio Petrone,” Carlos A. Jiménez-Hoyos,
and Xiaosong Li*'

. The integration over SO(3) can be broken down to two
surface integrals over a 2-sphere S* and one over S'.*° Lebedev
integration grids discretize the surface integral of a 2-sphere and

"Department of Chemistry, University of Washington, Seattle, Washington 98195, United States are commonly used when evaluating DET exchange correlation

3FDepartment of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States functionals 27,28 All integration p oints lic on the surface of a
unit sphere and are invariant under the octahedral rotation

Incremental Fock Build Lebedev Grid group with inversion. They are classified into different orders,
T Delta-Delta ‘ where the order n grid integrates exactly all spherical harmonics
*7— petea | f 10 of order n or less. Lebedev grids are efficient schemes to

Tl OB & | L evaluate the surface integral of a unit sphere and can be used to
8 201 - . | "« integrate over the a (or y) and f rotation angles for spin-
2] ..I. ' °~°E projected GHF. Compared to the mixed Trapezoid and Gauss-
o (N = Legendre grid, far fewer integration points are required to
212 ' achieve the same accuracy in spin symmetry restoration. Our

' s implementation uses a Lebedev grid for integration over S* (@
o 0o %5 and f) and a Trapezoid grid for integration over S' (y).

05 Al
Xax,'s 0 1.0 -1.0 N

| I ] I 1 I 1 ] 1 1 T 1 ] 1 I 1 1
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19
SCF Iterations

2

ABSTRACT: Projected Hartree—Fock (PHF) theory can restore important symmetries to broken symmetry wave functions.
Variation after projection (VAP) implementations make it possible to deliberately break and then restore a given symmetry by
directly minimizing the projected energy expression. This technique can be applied to any symmetry that can be broken from
relaxing constraints on single Slater determinant wave functions. For instance, generalized Hartree—Fock (GHF) wave functions
are eigenfunctions of neither S, nor §% By relaxing these constraints, the wave function can explore a larger variational space and
can reach lower energies than more constrained HF solutions. We have implemented spin-projected GHF (SGHF), which
retains many of the advantages of breaking symmetry while also being a spin eigenfunction, with some notable improvements
over previous implementations. Our new algorithm involves the formation of new intermediate matrices not previously discussed
in the literature. Discretization of the necessary integration over the rotation group SO(3) is also accomplished much more
efficiently using Lebedev grids. A novel scheme to incrementally build rotated Fock matrices is also introduced and compared
with more standard approaches.

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00832
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Table 1. Error of (S*) and Energy for Different Integration Grids”

molecule basis set grid no. points (Sz) error remaining spin cont. energy error (E,)

H, STO-3G TrapGaussLeg(2,2,2) 8 8.234 x 1072 93.7% 1.434 X 1072
TrapGaussLeg(2,6,2) 24 1279 X 107° 1.45 X 107%% 1.646 X 107°
TrapGaussLeg(2,10,2) 40 2.808 X 107 3.20 X 107°%
LebedevTrap(6,2) 12

0, 6-31G TrapGaussLeg(6,10,6) 360 1.024 x 10~° 3.02 X 107%% 191 x 1071°
TrapGaussLeg(7,10,7) 490 —5.620 x 107' 1.66 X 107°%
LebedevTrap(14,6) 84 8.760 x 107'° 2.58 X 107°% 1.40 x 107"
LebedevTrap(26,7) 182 —-7.017 x 107* 2.07 X 107'%

“Note that an optimized TrapGaussLeg algorithm may lead to a smaller number of grid points than in our implementation, but the LebedevTrap
grid is still optimal in all cases.

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00832
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e Number of points of the Lebedev quadrature for spherical
surface against the degree t

1
NLebedev ™ §(t +1)% +2

The sampling points and weights for up to 131st-degree polynomial are available.

Lebedev, V. I.; D. N. Laikov (1999). "A quadrature formula for the sphere of the 131st
algebraic order of accuracy". Doklady Mathematics. 59 (3): 477-481.

e Spherical design (SD) on S2: the sampling points are equally
distributed on the sphere surface S2 as far as possible

1 1
Nsp2 = §t2 F—t+ O(1)

competing performance with the Lebedev method for
a certain type of integrand functions

C. H. L. Beentjes, Quadrature on a spherical surface, Technical Report,
Oxford University (2015).
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2000 l u l . l l

7 SD2 |
S
(@)
Q.

“5 10001 T+GL -
+H:

Lebedev
O 1 1 1 1 1 1
0 20 f 40 60

FIG. 1: Number of points for the Lebedev quadrature
(red circles), trapezoidal+Gauss-Legendre (T+GL) quadra-
ture (blue triangles), and the spherical design (SD2, green
inverse triangles) to calculate the integral of a polynomial of
at most t degree exactly for the unit sphere surface S (o and
B). For the T4+GL method, (t + 1)[(t + 1)/2] is shown.
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10°p :
l' 57Fe 1 .
107 4 10
5 ] GXPFI1A interaction —a— T+GL+T
- _4- -
s 10°F ; < —eo— Lebedev+T
= E 3 10°
10°F } p=
. . —
a L
10-8 | T UN HT T N N T U TN NN N TN T N TN SO S S N PO T N T | q

1/2 11/2 21/2 . 31/2 41/2 51/2

FIG. 3: [I-projected components, f;, of the JHF wave func- 1
- 57 . . i 1 ]
tions of °‘Fe. The wave functions are given by the JHF cal- 0 5000 10000
|

culations with J” = 1/27 and 21/27. — — 17—

poomd vuomd sood vl voomd 2ol 2l o oo sl s s sl ¢

0 5000
Number of points

1 |

FIG. 4: Error of the Hamiltonian and J? expectation values,
AE = |E — Eexact| and AJ? = |(J?) — J(J 4+ 1)|, of the 1/2~
state of °"Fe against the number of points. The wave function
is given by the JHF calculation.
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57
Fe

GXPF1A interaction

fraction
—
(@)

PETTIT BRI EERTITT BT T BERTITT BRI BTy

T T N |

51/2

N WA TR G EOR [CERD CCIRR SRS TN R (oo [EARN) WAIEON Nk N A R NARRY (ORE) (Ol O |

1/2 11/2 21/2 . 31/2 41/2

FIG. 3: [I-projected components, f;, of the JHF wave func-
tions of °"Fe. The wave functions are given by the JHF cal-
culations with J” = 1/27 and 21/27.

—v— SD2+T
—a— T+GL+T
—e— Lebedev+T

10

1

0 10000 20000 30000
10° k
L
1
- :
—~10 1
3 :
L
-10 L
10 B
1
L
| 1 1 1 1 1 1 1“
0 10000 20000 30000

Number of points

FIG. 5: Errors of the Hamiltonian and J? expectation values
of the 21/2 state of °"Fe against the number of the quadra-
ture points. See caption of Fig. |4 for details.
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fraction

Method Number of points
T+GL+T 1800
Lebedev+T 1290
SD2+T 1800
Gauss-type SO(3) 960
Efficiency=1 1124

TABLE I: Number of points of quadratures for a degree of
exactness t = 14.

—v— SD2+T
—a— T+LG+T
—eo— Lebedev+T

0 5000
Number of points
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For numerical tests, we adopted mainly three methods:
the T4+GL+T, the Lebedev+T, and the SD2+T quadra-
tures. With ¢t = J + I.x, the conventional T+GL+T
quadrature becomes mathematically exact if the number
of points are taken as N, >t+1and N, > [(t +1)/2].
For the Lebedev quadrature and the spherical design,

dev+T quadrature and
T+GL+T quadrature asymptots
of the poin{f and n*
by the factpr 2/3 byjintroducing the Lebedev quadrature.
The SD2+X quadrdture shows slightly better behavior to
the T+GL+T Case. In addition, the Gauss-type SO(3)
quadrature was also discussed showing a promising re-
sult. This discussions are also applicable to the isospin
projection.

If we apply a symmetry restriction to the wave func-
tion to reduce the number of points [33], the quadrature
should have the same symmetry. It is desired to develop
an efficient Gaussian SO(3) quadrature having appropri-
ate symmetries for higher degrees.
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Computer Simulations in
Solid-State NMR. IILI.
Powder Averaging

MATTIAS EDEN
Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

ABSTRACT: Asthe final partin a series of articles on numerical simulations in solid-state
NMR (Concepts Magn Reson 17A: 117-154, 2003 and Concepts Magn Reson Part A 18A: 1-23,
2003), aspects of simulations of NMR responses from powders are discussed. The underlying
equations for powder averaging are derived, and it is demonstrated how powder averages
may be estimated numerically. Orientational symmetry in solid-state NMR is summarized
and exploited to achieve more efficient calculations. Explicit computer code in C/C++ is
given for simulation of NMR spectra from powders containing (1) two homonuclear spins-1/2
in a static sample and (2) a heteronuclear two spin-1/2 system under magic-angle-spinning
conditions. © 2003 Wiley Periodicals, Inc. Concepts Magn Reson Part A 18A: 24-55, 2003

KEY WORDS: solid-state NMR; numerical simulation; computer algorithm; powder aver-
age; orientational average; orientational symmetry; static solid; magic-angle-spinning; dy-
namically inhomogeneous Hamiltonian
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where the numbers {q,} are components of a vector a,
STEP Scheme which depends on the integration range and how the
planar range is divided. There are many possibilities
(34). The sampling of the grid points { x;, y;} em-
ployed here corresponds to

The STEP method divides the planar region { x, y}
into a grid of evenly spaced coordinates { x;, y;}.
These are mapped onto the sphere, 1.e., converted into

Euler angles describing an orientation that may be 2 {(1,0, 1) for full sphere and hemisphere
. . a=
represented on the unit sphere. The mappings used (2,1,8) for octant
here are [103]
aiSTEP = x, [99] Likewise, the number b depends on the integration
range as follows:
and _ (1 for full sphere
~ |2 for hemisphere and octant [104]
Brsm) 1001

The weight associated with the angle {a;, B;} is

' b
Assuming that N* and N? samples are used for x and bt

y, respectively, tl.le resulting set comprises N*N® ori- WSTE = Ngrsin{B;} [105]
entations, each given by
with the normalization constant

21T
STEP . .
: = + = A —
Q; Nea, (ai + @), i=01,2, N-1 . e
[101] Ngrgp = | N® 2 Sin{Bj} [106]
j=0
: T
ST = SN°h 2j+1), j=0,1,2,...NF-1 When using these equations to generate the STEP
sets, it is recommended to use equal increments (i.e.,
[102] “steps”) in the two integration variables a and 3. This

implies using N* = N® for the octant sets, N* = 4NP
for the hemispheric sets, and N* = 2NP for the full
sphere.
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ZCW Scheme are used, giving the Euler angles

: : : g 2
It is out of the scope of this article to justify the aJ-ZCW=c—1Tm0d{iFM/NM, 1},
. . . 3
generic equations for the ZCW sets. Detailed expla-

: , j=0,1,2,...,Ny—1 [111]
nations may be found in Refs. (28—-30, 32). The ZCW

partitions are generated from numbers F,, of the B; " = arccos[c,(c;mod{j/Ny, 1} — )],
Fibonacci series (/5). These are given by the recur- 012 N1 T[l17]
sion

As for the STEP implementation, the numbers {c,}
are components of a vector ¢, given by

Fy=Fy_,+ F,_,, M=0,1,2,...
M . g (1,2,1)  for full sphere

[]()7] ¢ ={(-=1,1,1) for hemisphere [113]
(2,1,8)  for octant

with F 0~ 8 and F By 13. For a given integer M, the The weights are equal for all angles in a ZCW set;
COI‘I'CSpOIlding ZCW set COmpl‘iSCS they are calculated as the inverse of the number of
orientations:
Ny = Fyyr [108] w?V = N,,! [114]
samples over the planar range {x, y}. Next, the 28. Zaremba SK, Good lattice points, discrepancy, and
mappings numerical integration. Ann Mat Pura Appl 1966; 4:73:
293-317.
a,-ZCW =1, [109] 29. Conroy H. Molecular Schrodinger equation. VIII. A

new method for the evaluation of multidimensional

integrals. J Chem Phys 1967; 47:5307-5318.

and 30. Cheng VB, Suzukawa HH, Wolfsberg M. Investiga-
tions of a nonrandom numerical method for multidi-

J.ZCW = arccos{y;} [110] mensional integration. J Chem Phys 1973; 59:3992—
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//t****a**t 7ZCW ROUTINES dok ok ok ok ok ok ok ok ok ok
int getNumberZCW(int M)
//returns the number of ZCW angles for the given integer M=2,3,4,.
{
int j,gM=5,gMminusl=3;
int sum=5;
for(j=0;j<=M;j++) |
sum= (gM+gMminusl) ;
gMminusl=gM;
gM=sum;
}
return sum;

}

void genZCW(euler *angle_list,double *weight_list,int M,char *sphereType)
//constructs the set containing getNumberZCW(M) ZCW orientations {angle_j,weight_j}
//for the given choice of symmetry: sphereType is either of:{ full, hemi, oct }

{

double c[3]; //define the vector ’'c’, and assign its elements

if (!strcmp(sphereType, “full”)) {c[0]l=1.;c[1]1=2.;c[2]=1.;};

if (!strcmp(sphereType, “hemi”)) {c[0]=—1.;c[1l]=1;c[2]=1.;};

if (!strcmp(sphereType, “oct”)) {c[0]l=—1.;c[1l]=1;c[2]=4.;};

int N=getNumberZCW (M) ; //total number of angles

int g2=getNumberZCW(M—2) ;

for(int m=0;m<=(N—-1);m++ ) {
angle_list[m].beta=acos( c[0]*(c[1]*fmod (m/double(N),1.)—1.) );
angle_list[m].alpha=2.*Pi*( fmod( (m*g2/double(N)),1.) )/c[2];
angle_list[m].gamma=0.;
weight_list[m]=1./double(N);

}

}

//********* STEP ROUTINE * ok ok k kk ok k ok ok ok

void genSTEP(euler *angle_list,double *weight_list,int N_alpha,int N_beta,char *sphereType)
//constructs the set containing (N_alpha*N_beta) STEP orientations {angle_j,weight_j} for the given
//choice of symmetry: sphereType is either of:{ full, hemi, oct }

{

double b,a[3],norm_step=0.; //define b and the elements of the vector ’'a’

if (!strcmp(sphereType, “full”)) {al0]=1.;a[1]1=0.;a[2]=1.;b=1.;};

if (!strcmp(sphereType, “hemi”)) {a[0]=1.;a[1]=0.;a[2]=1.;b=2.;};

if (!strcmp(sphereType, “oct”)) {al0]l=2.;a[l]l=1.;a[2]=8.;b=2.;};

double inc_alpha=2.*Pi/( N_alpha*a[2] ); //calculate incrementation in alpha angle
double inc_beta=Pi/( 2.*N_beta*b ); //calculate incrementation in beta angle
//calculate the normalization factor
for(int j=0;j<N_beta;j++) norm_step += sin( inc_beta*( 2.*j+1.) );
norm_step=( 1./(N_alpha*norm_step) );
//assign the angles and weights
for(int j=0;j<N_beta;j++ ) {
for(int i=0;i<N_alpha;i++ ){
angle_list[j*N_alpha+i] .alpha=inc_alpha*( a[l]l+ i*a[0] );
angle_list[j*N_alpha+i] .beta=inc_beta*( 2.*j+1.);
angle_list[j*N_alpha+i].gamma=0. ;
weight_list[j*N_alpha+i] =norm_step*sin( inc_beta*( 2.*j+1.) );
}
}
}



