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self-learning emulator

A self-learning emulator is an active learning protocol that can be used with any emulator
that faithfully reproduces the exact solution at selected training points. The key ingredi-
ent is a fast estimate of the emulator error that becomes progressively more accurate
as the emulator is improved, and the accuracy of the error estimate can be corrected
using machine learning

Three example

1 The first uses cubic spline interpolation to find the solution of a transcendental
equation with variable coefficients.

2 The second example compares a spline emulator and a reduced basis method
emulator to find solutions of a parameterized differential equation.

3 The third example uses eigenvector continuation to find the eigenvectors and
eigenvalues of a large Hamiltonian matrix that depends on several control
parameters.
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Difficult computations

The frontiers of scientific discovery often reside just beyond the limits of computabil-
ity. This explains the great interest across many scientific disciplines in using machine
learning tools to build efficient emulators that predict scientific processes beyond what
is possible with direct calculations. However, a problem arises in that large amounts of
training data for such an emulator are not possible since the required computations are
difficult and expensive.→

Different from machine learning algorithms using using gradient descent optimiza-
tion. While these gradient descent optimization methods are highly parallelizable
and very fast, they usually suffer from critical slowing down with respect to error
and cannot achieve arbitrarily high accuracy in polynomial computing time. Some-
times scientific discovery requires seeing very small but important new phenom-
ena that might otherwise be absent in approximate machine learning models.
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Constraint equations and error estimates

Consider a general set of simultaneous constraint equations Gi (x, c) = 0 that we solve
for variables x = {xj} as a function of control parameters c = {ck} over some domain D.
Denote the exact solutions as x(c) For some set of training points

{
c(i)} and construct

an approximate solution x̃(c) for all c ∈ D . Let us define the error or loss function as the
norm ∥∆x(c)∥ of the residual ∆x(c) = x(c)− x̃(c) . Minimize ∆x using fewer training
points When ∆x → 0, we can accurately expand the constraint equations as

Gi (x̃(c), c) + ∆x(c) · ∇xGi (x̃(c), c) ≈ 0 (1)

Number of degrees of freedom is small: use Newton-Raphson method to estimate
log||∆x||
Number of degrees of freedom is large: choose another positive function
F [{Gi (x̃(c), c)}] as a surrogate for ∥∆x(c)∥ . The only essential requirement we
impose on F [{Gi (x̃(c), c)}] is that it is linearly proportional to ∥∆x(c)∥ in the limit
∥∆x(c)∥ → 0 . This allows us to write the logarithm of the error as

log ∥∆x(c)∥ = log F [{Gi (x̃(c), c)}] + A + B(c) (2)
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Solution of the HWG equation

where A is a constant and the average of B(c) over the domain D is zero. In the
limit of large number of training points, we can neglect the much smaller variation of
B(c) over the domain D. We can therefore approximate the logarithm of the error as
log F [{Gi (x̃(c), c)}] + A . The unknown constant A is irrelevant for comparing the log-
arithm of the error for different points c. Nevertheless, we can also quickly estimate A
simply by taking several random samples of c and computing the average value of the
difference between log ∥∆x(c)∥ and log F [{Gi (x̃(c), c)}] . We can refine this estimate
further using machine learning to approximate the function B(c) .

Figure: self-learning Emulator
Figure: Machine learning
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Model 1

transcendental equation: x5 + c4x4 sin(10x) + x3 + x2 + x + 1 = 0,

Figure: Logarithm of the actual error and error esti-
mate for the cubic spline self-learning emulator
after 20 iterations

We start with three training points for c4
, two on the boundary and one in the
interior, and use natural cubic splines to
define the cubic spline approximation
x̃ (c4) for all values of c4 . The logarithm
of the error function is then log |∆x (c4)|
where ∆x (c4) = x (c4)− x̃ (c4) . We
can estimate |∆x (c4)| using the
Newton-Raphson method,

|∆x (c4)| ≈
|p (x̃ (c4))|√

|p′ (x̃ (c4))|2 + ϵ2
(3)
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Model 2

transcendental equation: L = 1
(1+2z)2

d2

dz2 − 2
(1+2z)3

d
dz + c2e2cL = 1

(1+2z)2
d2

dz2 −
2

(1+2z)3
d
dz + c2e2c

Instruction
It’s a family of differential equations Lx(z) = 0, c is a real parameter. Our boundary
conditions are x(z = 0, c) = 0 and ∂zx(z = 0, c) = 1 for all c . We consider the region
0 ≤ z ≤ 1 , and 0 ≤ c ≤ 1 . The exact solution is x(z, c) = 1

cec sin
[
cec (z + z2)] . We

consider twoand c is a real parameter. Our boundary conditions are x(z = 0, c) = 0
and ∂zx(z = 0, c) = 1 for all c . We consider the region 0 ≤ z ≤ 1 , and 0 ≤ c ≤ 1.
The exact solution is x(z, c) = 1

cec sin
[
cec (z + z2)] . We consider two different

emulators. natural spline emulator and a reduced basis emulator.For our fast error
estimate F[x(z, c), c] , we need some function that is linearly proportional to the actual
error ∥∆x(z, c)∥ in the limit ∥∆x(z, c)∥ → 0 . we choose

F [x̃(z, c), c] =

∥∥∥∥∥∥∥∥
Lx̃(z, c)√(

d
dz Lx̃(z, c)

)2
+ ϵ2

∥∥∥∥∥∥∥∥
1

(5)
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Figure: Logarithm of the actual error, error
estimate, and corrected error esti-
mate for the natural spline emula-
tor with self-learning in Model 2 af-
ter 20 iterations

Figure: Logarithm of the actual error, error
estimate, and corrected error esti-
mate for the reduced basis emula-
tor with self-learning in Model 2 af-
ter 10 iterations
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Model 3 (eigenvector continuationeigenvector continuation)

H(c) is a manifold of Hamiltonians where the dependence on the control param-
eters c (Here is the six possible pairwise interactions, cij , with i < j for four distin-
guishable particles under ground state) is smooth, and its eigenvector |∆v(c)⟩

Instruction
The logarithm of the error is log ∥|∆v(c)⟩∥, where |∆v(c)⟩ = |v(c)⟩ − |ṽ(c)⟩ .
Computing the error directly will be computationally too expensive for large systems,
and so we will instead work with log F [ṽ(c),H(c)], where F [ṽ(c),H(c)] is proportional
to the square root of the variance of the Hamiltonian,

F [ṽ(c),H(c)] =

√√√√〈
ṽ(c)

∣∣∣[H(c)− Ẽ(c)]2
∣∣∣ ṽ(c)

〉
〈
ṽ(c)

∣∣[H(c)]2
∣∣ ṽ(c)

〉 . (6)

We note that F [ṽ(c),H(c)]will be linearly proportional to ∥|∆v(c)⟩∥ in the limit
∥|∆v(c)⟩∥ → 0 . Therefore log F [ṽ(c), H(c)] can be used as a surrogate for the
logarithm.|ṽ(c)⟩ is the eigenvector of H(c) onto the subspace spanned by the training
eigenvectors {|ṽ(ci )⟩}
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Model 3

Figure: Logarithm of the error in Model 3 after 40 iterations using self-learning EC. In panel (a) we show the logarithm
of the actual error (red), and in panel (b) we show the logarithm of the estimated error (blue)

Figure: Plot of the two-particle clustering and short-range correlations in Model 3. ρ13 (red) measures the probability
that particles 1 and 3 occupy the same lattice site, and the correlation function ρ23 (blue) measures the
probability that particles 2 and 3 occupy the same lattice site
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Conclusion

Self-learning emulation is a general approach that can be implemented with any emu-
lator that faithfully reproduces the exact solution at selected training points. They use a
fast estimate for the error in the training process and perform full calculations only for the
chosen new training points. If needed, the difference between the estimated error and
exact error can be corrected using machine learning. If many evaluations are required,
the computational advantage can grow as large as the raw speedup factor of the emu-
lator, Sraw , which can be several orders of magnitude or more. Self-learning emulators
are a highly efficient class of algorithms that offer both high speed and accuracy as well
as a reliable estimate of the error.
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novelty

Model 1 : Sraw <105

Model 2 : Sraw <130

Model 3 : Sraw <150
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