Perturbative Quantum Monte Carlo Method for Nuclear Physics

Nuclear Lattice EFT Collaboration

¹Graduate School of China Academy of Engineering Physics, Beijing

Sun Yat-sen University, School of Physics and Astronomy Sep-16-2022

Introduction: Nuclear physics frontiers

Hot Topics in Nuclear Physics

Introduction: Standard model of nuclear physics

• Shell model: mean field, shell structure, no central force (M. Mayer, J. Jensen, 1963 Nobel Prize)

• Collective motions: rotation and vibration, particle-vibration coupling (A. Bohr, B. Mottelson, J. Rainwater, 1975 Nobel Prize)

Introduction: Modern nuclear theories

Road map - Towards a comprehensive description of the nucleus

Ab initio methods:

Microscopic interactions Lattice QCD $(A = 0, 1, 2, ...)$ NCSM, F-Y, GFMC $(A = 3-16)$ Coupled cluster, IMSRG $(A = 16-100)$

- **Configuration-interaction theories**: Phenomenological interactions Shell model
- **Density functional theories**: Phenomenological interactions mean field approximation Skyrme, Gogny, RMF, ...

Lattice FFT : Ab initio method for $A = 3-100$

Why need nuclear ab initio methods

Mean field models are useful but **quantum correlations** not included $|\Psi\rangle = 1/\sqrt{2} [|0\rangle |1\rangle + |1\rangle |0\rangle]$

In mean field models, motion of particle 1

is independent of other particles $P(1,2) = P(1) \times P(2)$

Predictions are model-dependent

Example: symmetry energy

Symptom 1: Lack of quantum correlations Symptom 2: Imprecise nuclear forces Recipe: **Exactly** solve many-body Schrödinger equation with **precise** nuclear force =⇒ **nuclear ab initio methods**

Dimensionality curse in nuclear many-body problems

Solution 1: Reduce effective Hilbert space

Introduction to Lattice Effective Field Theory

Lattice EFT = **Chiral EFT** + **Lattice** + **Monte Carlo**

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- **Q** Discretized chiral nuclear force
- Lattice spacing $a \approx 1$ fm = 620 MeV (∼chiral symmetry breaking scale)
- Protons & neutrons interacting via **short-range,** δ**-like** and **long-range, pion-exchange** interactions
- Exact method, polynomial scaling $({\sim A}^2)$

Introduction: Chiral effective field theory

Chiral EFT: The low-energy equivalence of the QCD Weinberg (1979,1990,1991), Gasser, Leutwyler (1984,1985)

- \bullet Proton (uud), neutron (udd), pion (ud)
- Spontaneously broken chiral symmetry: $SU(2)_I \times SU(2)_R \rightarrow SU(2)_V$
- Goldstone theorem implies a light pion: Long-range part of the nuclear force
- **e** Contact terms: Short-range part of the nuclear force
- Hard scale: $Λ_γ \sim 1$ GeV: Chiral EFT works for momentum $Q \ll \Lambda_{\gamma}$

Quarks confined in nucleons and pions

Comparison to Lattice QCD

L.

Fit effective chiral force to N-N scattering data

- Chiral force is organized by a **power counting of** (Q/Λ)^ν \bullet
- Fit chiral force in the **continuum** (Λ≈400-500 MeV):
	- **IDAHO N**4**LO**: Entem, Machleidt, Nosyk, PRC 96, 024004 (2017);
	- **Bochum N**4**LO**+: Reinert, Krebs, Epelbaum, EPJA 54, 86 (2018)
- Fit chiral force on the **lattice**: by Nuclear Lattice EFT group, in progress

- **Leading Order:** EPJA 31, 105 (2007) 0
- **Fit to NLO:** EPJA 35, 343 (2008) ۰
- **Fit to N**2**LO:** EPJA 53, 83 (2017) 0
- **Fit to N**3**LO:** PRC 98, 044002 (2018) \bullet

- **Restore rotational symmetry:** PRD 90, 034507 (2014)
- \bullet **Precision phase shifts on lattice:** PLB 760, 309 (2016)
- 0 **Arbitrary coupled channels:** PRC 100, 064001 (2019)
- **Restore Galilean invariance:** PRC 99, 064001 (2019)

Simulate many-body system in LEFT

g.s. from **imaginary time projection**:

 $|\Psi_{\text{g.s.}}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H)|\Psi_A\rangle$

with $|\Psi_A\rangle$ representing A free nucleons.

At finite temperature: 0

$$
\langle \textit{O} \rangle = \frac{\text{Tr}\left(e^{-\beta \textit{H}}\hat{\textit{O}}\right)}{\text{Tr}\left(e^{-\beta \textit{H}}\right)}
$$

For a two-body δ – function interaction on the lattice

$$
H = \sum_{nn'} -\psi_n^{\dagger} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + C \sum_n : (\psi_n^{\dagger} \psi_n)^2 :
$$

ψ † **ⁿ**(ψ**n**) create (annihilate) a partice at mesh point **n**. N-N interactions decomposed with **Hubbard–Stratonovich transformation:**

$$
\mathcal{L} \exp(-a_t H) := \int \prod_n d s_n \cdot \exp\left[\sum_n \left(-\frac{s_n^2}{2} + a_t \psi_n^{\dagger} \sum_{n'} \frac{\nabla_{nn'}^2}{2M} \psi_{n'} + \sqrt{-a_t C} s_n \psi_n^{\dagger} \psi_n\right)\right].
$$

Imaginary time extrapolation to find ground state

Samples are generated by **Markov Chain Monte Carlo**

Observables calculated as $\langle O \rangle = (1/N)\sum_{i=1}^N O_i$ Error scales as $\varepsilon \sim \mathscr{O}(1/\sqrt{N})$

Number of samples $N \sim 10^3{\sim}10^6$

Total energies at large t follow

 $E_A(t) = E_A(\infty) + c \exp[-\Delta E \tau].$

For any inserted operator $\mathscr O$,

 $\mathscr{O}_A(\tau)=\mathscr{O}_A(\infty)+c'\exp\left[-\Delta E\tau/2\right],$

c, c' , ΔE are fitting parameters.

Monte Carlo sign problem

- **•** Sign problem: Monte Carlo works well for well-behaved functions, however, sometimes the integral becomes highly oscillating.
- QMC sign problem comes from the fermion anti-symmetrization.
- **O** Split $H = H_0 + \lambda V_C$. H_0 : w/o sign problem; V_{C} : w/ sign problem.
- **O** Solution 1: numerical extrapolation from $\lambda = 0$ to $\lambda = 1$.
- **O** Solution 2: perturbative calculation $near \lambda = 0$.

Monte Carlo methods are powerful, but limited by sign problem Fortunately, there are sign-problem-free systems with specific symmetries

"For example, the **nuclear systems** can be simulated with a SU(4) symmetric interaction in lattice EFT[18], or with simplified interactions such as AV8' with Green's function Monte Carlo method[44]. In **condensed matter physics**, the square-lattice Heisenberg model can be free from sign problem for specific parametrizations[45], and unified principles for designing sign-problem-free actions for lattice fermionic models are proposed[46-48]. In these works it was revealed that the sign problem can be avoided by imposing certain symmetries, such as time-reversal symmetry[46], Majorana positivity[47] or Majorana-time-reveral symmetry[48]. For **ultracold atoms**, spin- $3/2$ fermionic system with exact $SO(5)$ symmetry can be sign-problem-free[49] and more general rules for finding such systems are discussed[50]. The **unitary Fermi gas** with equal number of spin-up and spin-down particles provides another important system that can be simulated with QMC without the sign problem[51, 52]. In **quantum chemistry**, it is shown that the sign problem can be alleviated by optimizing the wave functions[53], or introducing efficiently computable basis changes[54]."

Nuclear force has an approximate SU(4) symmetry In this SU(4) limit the nuclear force is independent of spin-isospin and can be simulated without sign problem \leftarrow **How good is this approximation?**

N-N interaction in large- N_C

General form of the non-relativisitc N-N potential:

$$
V_{NN} = V_C + V_S \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_{LS} \vec{l} \cdot \vec{S} + V_T S_{12} + V_Q Q_{12}
$$

+
$$
\left(W_C + W_S \vec{\sigma}_1 \cdot \vec{\sigma}_2 + W_{LS} \vec{l} \cdot \vec{S} + W_T S_{12} + W_Q Q_{12}\right) \vec{\tau}_1 \cdot \vec{\tau}_2
$$

$$
S_{12} = 3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2
$$

$$
Q_{12} = \frac{1}{2} \left\{ (\vec{\sigma}_1 \cdot \vec{l}), (\vec{\sigma}_2 \cdot \vec{l}) \right\}
$$

 \Rightarrow Standard decomposition in central (V_C, W_C, V_S, W_S) , tensor (V_T, W_T) , spin-orbit (V_1, W_2) and quadratic spin-orbit (V_0, W_0) terms

- Consider the limit $N_C \rightarrow \infty$ with $g^2 N_C =$ constant t 'Hooft, Nucl. Phys. B 72, 461(1974)
	- **Central potentials:** $V_C(r)$, $W_S(r) \sim N_C$, $W_C(r)$, $V_S(r) \sim 1/N_C$ =⇒Wigner SU(4) symmetry arises Kaplan, Savage, PLB 365 (1996) 244
	- **Spin-orbit potentials:** $V_{LS}(r)$, $W_{LS}(r) \sim 1/N_C$
	- **Tensor potentials:** $V_T(r) \sim 1/N_C$, $W_T(r) \sim N_C$
	- Quadratic spin-orbit potentials: $V_Q(r) \sim 1/N_C^3$, $W_Q(r) \sim 1/N_C$

"Hidden spin-isospin exchange symmetry", Phys. Rev. Lett. 127, 062501 (2021)

Evidence of hidden symmetry in nucleus

• Construct a N²LO chiral force on the $a = 1.32$ fm ($\Lambda \approx 471$ MeV) lattice:

$$
H_{N^2LO} = -\frac{\nabla^2}{2M} + V_{2N} + V_{3N} + V_{1pion} + V_{Coulomb}
$$

 $V_{1 \text{pion}}$ given by (broken) chiral symmetry. V_{2N} fixed by N-N scattering data.

	$\rho_{\rm sat}$ (fm ⁻³)	E_{sat}/A (MeV)	K (MeV)	$E({}^{16}O)$ (MeV)
LEFT	0.165(1)	$-15.9(0)$	263(8)	$-117.1(1)$
exp.	0.16(1)	$-16(1)$	240(20)	$-127.6(0)$
		. <i>C</i> ontains and compared to the most found of <i>II</i>		$+$ $ \sqrt{160}$ $($

 \bullet H_{N^2LO} gives good description of symmetric nuclear matter and finite nuclei:

Contribution of various contact terms in V_{2N} to $E({}^{16}O)$ (perturbatively):

operator	N_c pow.	Q pow.	E (MeV)	operator	N_c pow.	Q pow.	E (MeV)
1	N_C	1	-430.4	$q^2\vec{\sigma}_1\cdot\vec{\sigma}_2\vec{\tau}_1\cdot\vec{\tau}_2$	N_C	$(Q/\Lambda)^2$	24.2
$\vec{\sigma}_1 \cdot \vec{\sigma}_2$	$1/N_c$	1	33.0	$\frac{i}{2}(q\times k)\cdot(\vec{\sigma}_1+\vec{\sigma}_2)$	$1/N_c$	$(Q/\Lambda)^2$	0.0
q^2	N_C	$(Q/\Lambda)^2$	22.8	$(\vec{\sigma}_1 \cdot q)(\vec{\sigma}_2 \cdot q)$	$1/N_c$	$(Q/\Lambda)^2$	0.4
$q^2\vec{\tau}_1\cdot\vec{\tau}_2$	$1/N_c$	$(Q/\Lambda)^2$	6.0	$(\vec{\sigma}_1 \cdot q)(\vec{\sigma}_2 \cdot q)\vec{\tau}_1 \cdot \vec{\tau}_2$	N_C	$(Q/\Lambda)^2$	30.5
$q^2\vec{\sigma}_1\cdot\vec{\sigma}_2$	$1/N_C$	$(Q/\Lambda)^2$	0.6				

Note that $1/N_C^2 \approx 0.1$, $(Q/\Lambda)^2 \approx 0.2$ in ¹⁶O. **Red:** suppressed by $1/N_C^2$ or (Q/Λ)². **Blue:** suppressed by both factors. ←very clear hierachy

■ SU(4) symmetric term dominate ← No sign problem, good for MC

Nuclear binding from a SU(4) nuclear force

Ab initio calculation = **precise nuclear force** + **exactly solving Schrödinger equations**

In full quantum Monte Carlo simulations, **equations are solved exactly A simple SU(4) interaction** (central force only!) can describe the nuclear binding

Charge density and neutron matter from a SU(4) force

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.

Lu et al., Phys. Lett. B 797, 134863 (2019)

Trade-off in Monte Carlo simulations

- Simplified interactions with high symmetry =⇒Sign-problem-free, exactly solvable with MC
- Realistic complex interactions = Severe sign problem, can only be approximately solved with mean field methods

Is it possible to exactly solve a realistic interaction with MC?

Idea: Starting from a simplified sign-problem-free interaction add corrections with perturbation theory

- Much weaker sign problem in perturbative calculations
- **•** Most quantum correlations included non-perturbatively
- **•** Systematically improvable order by order, can check convergence

Higher order perturbation theory is complicated (e.g., exponentially increasing number of Feynman diagrams) Adaptation to MC is even more challenging!

Reyleigh-Schrödinger perturbation theory

For a Hamiltonian $H = H^{(0)} + \lambda V_C$,

In conventional stationary perturbation theory:

$$
E_i = E_i^{(0)} + \lambda \langle \Psi_i^{(0)} | V_C | \Psi_i^{(0)} \rangle + \lambda^2 \sum_{k \neq 0} \frac{\langle \Psi_k^{(0)} | V_C | \Psi_i^{(0)} \rangle}{E_k^{(0)} - E_i^{(0)}} + \mathcal{O}(\lambda^3)
$$

$$
|\Psi_i \rangle = |\Psi_i^{(0)} \rangle + \lambda \sum_{k \neq 0} \frac{\langle \Psi_k^{(0)} | V_C | \Psi_i^{(0)} \rangle}{E_k^{(0)} - E_i^{(0)}} |\Psi_k^{(0)} \rangle + \mathcal{O}(\lambda^2)
$$

• However, in projection Monte Carlo algorithms.

$$
E_{\rm g.s.}=\lim_{\tau\to\infty}\exp(-\tau H)|\Psi_\tau\rangle
$$

targets the ground states (or low-lying states) directly.

- **In projection methods, excited states are very expensive.** \leftarrow required for 2nd order energy or 1st order wave function!
- **•** All projection QMC calculations use at most first order perturbation theory.

Perturbative Monte Carlo (ptQMC) algorithm

We can expand $|\Psi\rangle$ against V_C ,

$$
|\Psi\rangle = \lim_{L_t \to \infty} M^{L_t/2} |\Psi_T\rangle = |\Psi_0\rangle + |\delta \Psi_1\rangle + \mathcal{O}(V_C^2),
$$
 (1)

with the wave functions defined as

$$
|\Psi_0\rangle = \lim_{L_t \to \infty} M_0^{L_t/2} |\Psi_T\rangle, \qquad |\delta \Psi_1\rangle = \lim_{L_t \to \infty} \sum_{k=1}^{L_t/2} M_0^{L_t/2-k} (M - M_0) M_0^{k-1} |\Psi_T\rangle,
$$

$$
E = E_0 + \delta E_1 + \delta E_2 + \mathcal{O}(V_C^3),
$$

where the partial energy contributions at each orders are

$$
E_0 = \langle \Psi_0 | (K + V) | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle,
$$

\n
$$
\delta E_1 = \langle \Psi_0 | V_C | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle,
$$

\n
$$
\delta E_2 = (\langle \Psi_0 | V_C | \delta \Psi_1 \rangle - \delta E_1 \text{Re} \langle \delta \Psi_1 | \Psi_0 \rangle) / \langle \Psi_0 | \Psi_0 \rangle,
$$
\n(2)

in which all matrix elements and overlaps can be expressed with,

$$
\mathcal{M}(O) = \langle \Psi_T | M_0^{Lt/2} O M_0^{Lt/2} | \Psi_T \rangle,
$$

$$
\mathcal{M}_k(O) = \langle \Psi_T | M_0^{Lt/2} O M_0^{Lt/2-k} M M_0^{k-1} | \Psi_T \rangle.
$$

Lu et al., PRL 128, 242501 (2022)

ptQMC with realistic chiral interaction

Perturbed amplitude can be transformed into an approximate Gaussian integral with a variable change. Note that

$$
\langle \exp(\sqrt{-a_t \mathcal{C}} s\rho) \rangle_{\mathcal{T}} \approx \exp(\sqrt{-a_t \mathcal{C}} s \langle \rho \rangle_{\mathcal{T}})
$$

$$
\mathcal{M}_k(O) = \langle \Psi_T | M_0^{L_t/2} O M_0^{L_t/2 - k} M M_0^{k-1} | \Psi_T \rangle
$$

=
$$
\int \mathcal{D}cP(c + \bar{c}) \langle \cdots O \cdots M(s_k, c + \bar{c}) \cdots \rangle_T
$$

=
$$
\mathcal{M}(s) \exp\left(\frac{\bar{c}^2}{2}\right) \int \mathcal{D}c \exp\left(-\frac{c^2}{2} + \varepsilon\right)
$$

$$
\bar{c}(n) = \frac{\partial}{\partial c(n)} \ln \langle \cdots M(s_k, c) \cdots \rangle_T \Big|_{c=0}
$$
 is a constant field easy to calculate

Integral over c **calculated with MC**

Left panel: Test calculation of the transfer matrix energy $E = -\ln\langle : \exp(-a_tH) : \rangle/a_t$ Lu et al., PRL 128, 242501 (2022)

Benchmark Hamiltonian: N2LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a N^2LO chiral Hamiltonian $H = K + V_{2N} + V_{3N} + V_{\text{cou}}$

$$
V_{2N} = \left[B_1 + B_2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_1 q^2 + C_2 q^2(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_4 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right]
$$

+ $C_5 \frac{i}{2} (\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) + C_6(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) + C_7(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right] e^{-\sum_{i=1}^{2} (p_i^6 + p_i'^6)/\Lambda^6}$
- $\frac{\mathcal{B}_{A}^2 f_{\pi}(q^2)}{4F_{\pi}^2} \left[\frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})}{q^2 + M_{\pi}^2} + C_{\pi}' \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right] (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$

$$
V_{3N} = \frac{c_E}{2F_{\pi}^4 \Lambda_{\chi}} e^{-\sum_{i=1}^{3} (p_i^6 + p_i'^6)/\Lambda^6}
$$

with C_{1−7}, g_A, c_E etc. **low** energy constants fitted to N-N scattering or π-N scattering data, $\Lambda = 340$ MeV is the **momentum cutoff**

LEC.	B_1	B_2	C_1	\mathcal{C}_{2}	С3
				-2.443 -0.125 0.143 -0.012 -0.013	
LEC.	C ₄	C_5	C ₆	C ₇	$C_{\textsf{F}}$
	-0.020	0.273	0.0	-0.078	0.712

Table: Fitted LECs' in lattice unit

Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$
H_0=K+\frac{1}{2}C_{\text{SU4}}\sum_{\boldsymbol{n}}:\tilde{\rho}^2(\boldsymbol{n}):
$$

The smeared density operator $\tilde{\rho}(n)$ is defined as

$$
\tilde{\rho}(\boldsymbol{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}) \tilde{a}_{i}(\boldsymbol{n}) + s_{L} \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}') \tilde{a}_{i}(\boldsymbol{n}'), \qquad (3)
$$

where i is the joint spin-isospin index

$$
\tilde{a}_i(n) = a_i(n) + s_{NL} \sum_{|n'-n|=1} a_i(n'). \tag{4}
$$

In this work we use a lattice spacing $a = 1.32$ fm and the parameter set

ptQMC with realistic chiral interaction

- $\frac{3H}{2}$ perform perturbative calculations \bullet We split $H = H_0 + (H - H_0)$ and
	- \bullet E₀ is the ground state of H₀
	- $E_1 = E_0 + \delta E_1$ is the first order corrected energy
- 4 He $\vert \cdot \vert$ corrected energy $E_2 = E_1 + \delta E_2$ is the second order
	- \bullet $E_{\text{non-pt}}$ is the exact solution (~infinite order)
	- Red bars on the right: Experiments Lu et al., PRL 128, 242501 (2022)

¹⁶O : For ⁴He and ¹⁶O, sign problem prevent us **from going to large** τ**, resulting in large statistical errors. But no need to worry,**

Perturbation theory can save us!

- **O** Though consistent with the exact solutions, we found abnormally large second order energy corrections
- We write $H = H_0 + \lambda (H H_0)$ and study the λ -dependence of energies $(0 \leq \lambda \leq 1)$
- \bullet $E_1 = E_0 + \lambda \delta E_1$ is a straight line
- $E_2 = E_1 + \lambda^2 \delta E_2$ is a parabola
- $E_{\text{non-pt}}$ is the exact solution
- For 16 O we use three different H_0 Lu et al., PRL 128, 242501 (2022)

As H_0 respects the SU(4) symmetry, the wave function $|\Psi_0\rangle$ must belong to one of **its irreducible representations (irreps). The full Hamiltonian** H **breaks the SU(4) symmetry, thus its ground state** $|Ψ\rangle$ is a mixture of different SU(4) irreps. The **components of** $|\Psi\rangle$ **that mixes the SU(4) irreps can only be seen in** $|\delta\Psi_1\rangle$ or δE_2

Reminder: A **symmetry breaking** perturbative Hamiltonian usually implies a large 2nd order energy correction!

Asymptotic beheaviour of the first order energy E_1

The first order energy E_1 consists of components with **different decay rates** \implies must be careful in extrapolations to $\tau \to \infty$

$$
E_1(\tau) = \frac{\langle \Psi_T | e^{-\tau H_0/2} (H_0 + V_C) e^{-\tau H_0/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-\tau H_0} | \Psi_T \rangle}
$$

\n
$$
= \left[E_0 + e^{-\tau \Delta} | C'|^2 E_1 + \langle \Psi_0 | V_C | \Psi_0 \rangle + 2e^{-\tau \Delta/2} \text{Re} \left[C' \langle \Psi'_0 | V_C | \Psi_0 \rangle \right] \right.
$$

\n
$$
+ | C'|^2 e^{-\tau \Delta} \langle \Psi'_0 | V_C | \Psi'_0 \rangle \right] / \left(1 + | C'|^2 e^{-\tau \Delta} \right)
$$

\n
$$
= E_0 + \langle \Psi_0 | V_C | \Psi_0 \rangle + e^{-\tau \Delta/2} \times 2 \text{Re} \left[C' \langle \Psi'_0 | V_C | \Psi_0 \rangle \right] + e^{-\tau \Delta} | C'|^2 (E_1' - E_1)
$$

Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC. $E_{\rm exp}$ is the experimental value. All energies are in MeV. We only show statistical errors from the MC simulations.

Realistic N²LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation $=$ nice agreement with the experiments Excellent predicative power \implies Demonstration of both **nuclear force model** and **many-body algorithm**

Perturbative calculations beyond the second order

Perturbative energy correction δE_n of the deuteron at each order. For the zeroth order we show F_0 .

- \bullet We calculated deuteron energy $E(^2H)$ in a small box $L = 6.6$ fm with a chiral Hamiltonian
- \bullet H is split as $H = (K + \mu V_0) + (V - \mu V_0)$, V_0 is the $SU(4)$ interaction and V is the full chiral interaction

•
$$
\mu = 0.6, \cdots, 1.6
$$
 is a constant

 E_0 , δE_1 and δE_2 are always significant. δE³ **and higher order contributions are** negligible, regardless of what H_0 we **choose as the unperturbed Hamiltonian**

The second order correction is large due to the symmetry breaking effect. There is no such mechanism for higher-order corrections, thus the higher-order corrections follow the usual power-counting hierachy.

Summary & Perspective

- Ab initio nuclear physics grows rapidly in **last two decades**.
	- No core shell model, In-medium SRG, lattice EFT, Green's function Monte Carlo, Coupled cluster, ...
	- mass 4-100, ground state, excited states, finite $-T$, etc.
- Monte Carlo methods are powerful but plagued by the sign problem.
- **•** Combining MC methods with the perturbation theory may solve the sign problem in many useful senarios.
- We developed an efficient algorithm for doing perturbative calculations in MC methods beyond the first order.
- When combined with a realistic nuclear chiral force, the results reproduce the experimental binding energies very well.
- Works in progress:
	- Efficient methods for calculating the third order corrections, or estimating the truncation errors of the perturbative series;
	- Applications to other interesting systems, e.g., bosons, finite-temperature systems, density distributions, etc.;

THANK YOU FOR YOUR ATTENTION