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Introduction: Standard model of nuclear physics

@ Shell model: mean field, shell
structure, no central force (M.
Mayer, J. Jensen, 1963 Nobel
Prize)

Radial distance

Nuclear binding potential well
.

Magic numbers or shell gaps

@ Collective motions: rotation and
vibration, particle-vibration
coupling (A. Bohr, B. Mottelson,
J. Rainwater, 1975 Nobel Prize)
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Introduction: Modern nuclear theories

Road map - Towards a comprehensive description of the nucleus

@ Ab initio methods:
. .. . Nuclear Landscape
Microscopic interactions _
Lattice QCD (A = 0, 1, 2, .)
NCSM, F-Y, GFMC (A = 3-16)
Coupled cluster, IMSRG (A = 16-100)

@ Configuration-interaction theories:
Phenomenological interactions
Shell model

@ Density functional theories:

Phenomenological interactions
mean field approximation Lattice EFT: Ab initio method for A = 3-100
Skyrme, Gogny, RMF, ...
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Why need nuclear ab initio methods

Mean field models are useful

but quantum correlations not included

W) =1/v2[|0)[1) +[1)[0)]

Predictions are model-dependent

Example: symmetry energy

Measuring a Pair of Entangled Photons

iflis then 2 must
red be blue

iflis then 2 must

\ blue be red

[ T BHF (Vidana) | T

NRvECE BHF (Z.H. Li) F

L RHFE [~ DBHF (Fuchs) i/
DD,;({N)W(Z) —————— DBHF (Sammarruca)
Gogny-HF(2) Chiral EFT-N’LO450

—— SHF(33) Chiral EFT-N'LO60
[ = VMB-APR
VMB-FP

In mean field models, motion of particle 1

is independent of other particles
P(1,2) = P(1) x P(2)

N

) 1
plp,
N.-B. Zhang and B.-A. Li, EPJA 55, 39 (2019)

Symptom 1: Lack of quantum correlations
Symptom 2: Imprecise nuclear forces
Recipe: Exactly solve many-body
Schrédinger equation with precise nuclear
force = nuclear ab initio methods
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Dimensionality curse in nuclear many-body problems

Exponent|a| increase of resources Solution 1: Reduce effective Hilbert space

3 ‘ with SRG evolution
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Solution 2: Monte Carlo algorithms
The Monte Carlo Integral

. " * * * *

Matrix Dimension

— o 00

1E+2 4 M-scheme matrix dimension N
for Oxygen Isotopes 0
1E+1 o — g
1E+0 T T T T T
0 2 4 6 8 10 12 14
N,

max

PRC 101, 014318 (2020)
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Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009),
Lihde, MeiBner, “Nuclear Lattice Effective Field Theory”, Springer (2019)

@ Discretized chiral nuclear force

@ Lattice spacing a~ 1 fm = 620 MeV @
(~chiral symmetry breaking scale) G O

@ Protons & neutrons interacting via @ G
short-range, 6-like and long-range, @
pion-exchange interactions Ja~os-26m

Lattice adapted for nucleus
@ Exact method, polynomial scaling (~ A?)
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Introduction: Chiral effective field theory

Chiral EFT: The low-energy equivalence of the QCD
Weinberg (1979,1990,1991), Gasser, Leutwyler (1984,1985)

@ Proton (uud), neutron (udd), pion (ud)

@ Spontaneously broken chiral symmetry:

SU(Q)LXSU(Q)R%SU(2)V

@ Goldstone theorem implies a light pion:
Long-range part of the nuclear force

@ Contact terms:
Short-range part of the nuclear force

@ Hard scale: Ay ~1 GeV: Chiral EFT works
for momentum Q < Ay

Quantum
Chromodynamics

\ \,. w/

-
Proton Neutron Virtual

Nuclear Few- ) ; o
iy sssy (s Chiral Effective-Field Theory
Problems
(S

Quarks confined
in nucleons and pions
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Comparison to Lattice QCD

LQCD LEFT
degree of freedom  quarks & gluons  nucleons and pions
lattice spacing ~0.1 fm ~1 fm
dispersion relation relativistic non-relativistic
renormalizability renormalizable  effective field theory
continuum limit yes no
Coulomb difficult easy
accessibility high T / low p low T / psat
sign problem severe for u >0 moderate
Accessible by Quarks

Lattice QCD

o A('('o»’ﬂgl(\, by
Lattice EFT
\
\

T [MeV]
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Fit effective chiral force to N-N scattering data

@ Chiral force is organized by a power counting of (Q/A)Y
@ Fit chiral force in the continuum (A~400-500 MeV):

@ IDAHO N*LO: Entem, Machleidt, Nosyk, PRC 96, 024004 (2017);
@ Bochum N4L0+: Reinert, Krebs, Epelbaum, EPJA 54, 86 (2018)

@ Fit chiral force on the lattice: by Nuclear Lattice EFT group, in progress

(P degrees]

&85

n  interacting

B,
VAV

(10, (degrees]

8°05) (degrees) °
\ ‘ 14
N Ellaﬂ [Gegrees] & ol Jegres
;\\ 1 s 1 s

<~

s(p)

Pra eV P MaV]

Leading Order: EPJA 31, 105 (2007) @ Restore rotational symmetry: PRD 90, 034507 (2014)
Fit to NLO: EPJA 35, 343 (2008) @ Precision phase shifts on lattice: PLB 760, 309 (2016)
Fit to N2LO: EPJA 53, 83 (2017) @ Arbitrary coupled channels: PRC 100, 064001 (2019)
@ Restore Galilean invariance: PRC 99, 064001 (2019)

Fit to N3LO: PRC 98, 044002 (2018)
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Simulate many-body system in LEFT

@ g.s. from imaginary time projection:
|wg.s.> o< ‘L!i_r)T:oeXp(*TH)‘\UA>

with |W4) representing A free nucleons.

@ At finite temperature:
Tr (e’BH(A)>
0)= ———~
() Tr (e=BH)
For a two-body 60— function interaction on the lattice

2
H=Y - wnz’ +CY (Wayn)
n

nn'

——> Eucidean time

Vi (Wa) create (annihilate) a partice at mesh point n.
N-N interactions decomposed with Hubbard—Stratonovich transformation:

2
5 V2 +
exp(— /Hds,, exp |:Z (2"+atq/nz 2’;\; Yy + atCsnl//,',l[/,,>} :




Imaginary time extrapolation to find ground state

Samples are generated by

Markov Chain Monte Carlo

Observables calculated as (0) = (1/N)XN,; O;

Error scales as £ ~ 0(1/VN)
Number of samples N ~ 103~10°
Total energies at large t follow
Ea(t) = Ea(c0) + cexp[—AET].
For any inserted operator O,
OA(7) = Oa(=) + ¢ exp[-AET/2],

c, ¢, AE are fitting parameters.

[ Cetner of mass gy SUG) invariant g Density g Coulomb energy

Hybrid Monte Carlo Algorithm

Projection transfer matrix operators operator

ginary g

Shuttle Algorithm

i R
i

ginary ginary i

energy (MeV)

gi

—20FT T T T T
A * exact
[ ‘\‘ I Monte Carlo
22F .
‘\
b
-24_- \f‘ -
- ~\x\
-26F [ P ]
[
N R T T
0.00 0.05 0.10 0.15 0.20

projection time (MeV~1)
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Monte Carlo sign problem

E;» (EMIB) [MeV]

00 05 10 15 20 25 30 35
© (10 Mev™)

90l
85

8.0

75}
7ol

05 06 07 08 09 1.0
dy

SLi (GT+Ew-1.0) e~ Unconstrained

= Fit

— Exp(-x~2/ 2)
— Exp(-x~2 / 2) * Cos(57x)

Sign problem: Monte Carlo works
well for well-behaved functions,
however, sometimes the integral
becomes highly oscillating.

QMC sign problem comes from the
fermion anti-symmetrization.

Split H=Hy+AVc. Hp: w/o sign
problem; Vc: w/ sign problem.
Solution 1: numerical extrapolation
fromA=0to A =1.

Solution 2: perturbative calculation
near A =0.
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Monte Carlo sign problem

Monte Carlo methods are powerful, but limited by sign problem
Fortunately, there are sign-problem-free systems with specific symmetries

“For example, the nuclear systems can be simulated with a SU(4) symmetric
interaction in lattice EFT[18], or with simplified interactions such as AV8’ with Green's
function Monte Carlo method[44]. In condensed matter physics, the square-lattice
Heisenberg model can be free from sign problem for specific parametrizations[45], and
unified principles for designing sign-problem-free actions for lattice fermionic models
are proposed[46-48]. In these works it was revealed that the sign problem can be
avoided by imposing certain symmetries, such as time-reversal symmetry[46],
Majorana positivity[47] or Majorana-time-reveral symmetry[48]. For ultracold atoms,
spin- 3/2 fermionic system with exact SO(5) symmetry can be sign-problem-free[49]
and more general rules for finding such systems are discussed[50]. The unitary Fermi
gas with equal number of spin-up and spin-down particles provides another important
system that can be simulated with QMC without the sign problem[51, 52]. In
quantum chemistry, it is shown that the sign problem can be alleviated by optimizing
the wave functions[53], or introducing efficiently computable basis changes[54].”

Nuclear force has an approximate SU(4) symmetry

In this SU(4) limit the nuclear force is independent of spin-isospin and can be
simulated without sign problem <= How good is this approximation?
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N-N interaction in large-N¢

@ General form of the non-relativisitc N-N potential:
Vin = Ve + V81 -8+ VisL- S+ VrSio+ Vo Qua
+ <Wc+ W1 -G+ WisL- S+ WS+ WQQ12) Tt
S12=361-F62-F— G162
Qu=3 {0, 1))
= Standard decomposition in central (V¢, We, Vs, Ws), tensor (Vr, Wr),
spin-orbit (Vis, Wis) and quadratic spin-orbit (V, Wg) terms
@ Consider the limit N¢ — o with g? /N =constant

t 'Hooft, Nucl. Phys. B 72, 461(1974)

@ Central potentials: V¢(r), Ws(r)~N¢, We(r), Vs(r)~1/N¢
= Wigner SU(4) symmetry arises Kaplan, Savage, PLB 365 (1996) 244
@ Spin-orbit potentials: V;s(r), Wis(r)~1/N¢
@ Tensor potentials: V7 (r) ~1/N¢, Wr(r)~ N¢
@ Quadratic spin-orbit potentials: Vq(r) ~1/N2, Wg(r) ~1/Nc

’ Isospin C S LS T Q ‘
V(r) N¢  1/N¢ 1/Nc¢ 1/N¢c 1/NE

W(r)1-7» 1/Nc  Nc  1/Nc Nc  1/Nc

“Hidden spin-isospin exchange symmetry”, Phys. Rev. Lett. 127, 062501 (2021)
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Evidence of hidden symmetry in nucleus

@ Construct a N°LO chiral force on the a=1.32 fm (A =~ 471 MeV) lattice:

VZ
Hy210==557 T Van + V3n + Vipion + Veoutomb
Vipion given by (broken) chiral symmetry. V,p fixed by N-N scattering data.

@ Hypp o gives good description of symmetric nuclear matter and finite nuclei:

psa(fm™3)  Ew/A(MeV) K (MeV)  E(1°0) (MeV)

LEFT  0.165(1) ~15.9(0) 263(8) ~117.1(1)

exp. 0.16(1) —16(1) 240(20) —127.6(0)

@ Contribution of various contact terms in Voy to E(60) (perturbatively):

operator N¢ pow. Q pow. E (MeV) operator N¢ pow. Q pow. E (MeV)
1 Nc 1 —430.4 G251 -Gy 1o Nc (Q/N)? 24.2
G -6, 1/N¢ 1 33.0 5(gx k) (61 +62) 1/N¢ (Q/N)? 0.0
a Ne (Q/N)? 228 (81-9)(32-9) UNe  (Q/A? 0.4
T 1/N¢ (Q/N)? 6.0 (81-9)(32- )% T N¢ (Q/N)? 30.5
q°61 -6 1/N¢ (Q/N)? 0.6

@ Note that 1/N2 2~ 0.1, (Q/A)2~ 0.2 in 1°0. Red: suppressed by 1/N2 or
(Q/N)2. Blue: suppressed by both factors.«<—very clear hierachy
@ SU(4) symmetric term dominate=MNo sign problem, good for MC
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Nuclear binding from a SU(4) nuclear force

Ab initio calculation = precise nuclear force + exactly solving Schrédinger equations

In full quantum Monte Carlo simulations, equations are solved exactly
A simple SU(4) interaction (central force only!) can describe the nuclear binding

M AL B NLELELEL BN B
0 = —
[ l-' He ]
3 - ]
\2_, -100 n -
N L ]
< [ ]
GC) -200 n -
5 L ]
o L ]
£ - E
E -300 n -
m F —=— Lattice ]
N et EXD. ]
-400 = . —
| L L L I L L L L I L L L L I L L L L I L L L L I 1]

0 10 20 30 40 50

Mass number A
Lu et al., Phys. Lett. B 797, 134863 (2019)
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Charge density and neutron matter from a SU(4) force

0.10

=4
o
a

0.00

Charge density pg, (e fm™)
I
S

d
o
a

0.00

Charge density and neutron matter equation of state
are impotant in element creation, neutron star merger, etc.

Empirical
e Leading Order
= Leading Order + Coulomb (pert.)

20

]
NS

EM 500 MeV/
EGM 450/500 MeV 7
EGM 450/700 MeV e
GCR (2012) A
APR (1998)

This work (SU(4)), L = 5|
This work (SU(4)), L = 6|
This work (SU(4)), L =7,
This work, L =5
This work, L = 6
This work, L =7

a
A,,’

1 1 1

2 4 6
Radius (fm)

Lu et al., Phys.

0.00

0.05 0.10 0.15
neutron density (fm™)

Lett. B 797, 134863 (2019)
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Trade-off in Monte Carlo simulations

@ Simplified interactions with high symmetry =—>Sign-problem-free, exactly
solvable with MC

@ Realistic complex interactions =Severe sign problem, can only be

approximately solved with mean field methods

Is it possible to exactly solve a realistic interaction with MC?

Idea: Starting from a simplified sign-problem-free interaction
add corrections with perturbation theory

@ Much weaker sign problem in perturbative calculations
@ Most quantum correlations included non-perturbatively

@ Systematically improvable order by order, can check convergence

Higher order perturbation theory is complicated
(e.g., exponentially increasing number of Feynman diagrams)
Adaptation to MC is even more challenging!
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Reyleigh-Schrodinger perturbation theory

For a Hamiltonian H = H(®) +AVe,
@ In conventional stationary perturbation theory:

(WO v )

E=E® + AW v w122y +0(23%)

& EO_gO
W ve vl

wy) = [w%) +127) W) +6(22)
k#0 k El

@ However, in projection Monte Carlo algorithms,
Egs. = 1_!51'1’e><p(—1:H)|\IJ7—)

targets the ground states (or low-lying states) directly.

@ In projection methods, excited states are very expensive. < required for 2nd
order energy or 1st order wave function!

@ All projection QMC calculations use at most first order perturbation theory.
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Perturbative Monte Carlo (ptQMC) algorithm

We can expand |W) against V¢,

(W)= fim M52 = [Wo) +[8W1) +O(V2), (1)
with the wave functions defined as

L2

Le/2
|Wo) Mg 2w, (W) = lim Y Mg (M- Mo) Mg W),
tT% k=1

= lim
Li—soo

E = E+8E+8E+0(VE),

where the partial energy contributions at each orders are

Ey = (Wo|(K+ V)[Wo)/(Wo|Wo),
0E1 = (Wo|Vc|Wo)/(Wo|Wo),
0E; = ({Wo|Vc|dW1)—SE1Re(6W1|W0)) /(Wo|Wo), (2)

in which all matrix elements and overlaps can be expressed with,
M(0) = (Wr|Ms oM wr),
M(0) = (Wr|MEPOME R MME ).

Lu et al., PRL 128, 242501 (2022)
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ptQMC with realistic chiral interaction

Statistical error (MeV)

Ey = -a;"In(Cexp(-aH):0) (MeV)

66 T T T T T T
16, ® w/o variable change|
O = w/variable change
68 |~
i
721 1{ }}{}}{%%%f )
74 | 4
L L L L L L
0 5 10 15 20 25
Number of measurements (10%)
10 T
-- - wlo variable change|
ST . | —#— w/ variable change
..... o
""'0-00.
L ‘0«\_
0.1 -\\-
L

100000
Number of measurements

Perturbed amplitude can be transformed
into an approximate Gaussian integral with
a variable change. Note that

(exp(v=2:Csp)) 7 ~ exp(v—a:Cs(p) )

M1(0) = (W |MEPOME 2 MME W 7)

:/@cP(c—O—E)(mO-~M(sk,c+E)~~'>T
— H(s)exp (%2) /@cexp (—%2 +£>

&(n) = %(n)ln(wM(sk,c)--)T’C:O is a

constant field easy to calculate
Integral over c calculated with MC
Left panel: Test calculation of the transfer

matrix energy E = —In(: exp(—a:H) :)/a:
Lu et al., PRL 128, 242501 (2022)
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Benchmark Hamiltonian: N2LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a N2LO chiral Hamiltonian
H=K+ Von+ V3N + Veou
Von = [51+Bz(°'1'62)+C1q2+C2q2(11'1?2)+C3L72(61 -62)+ (61 -62)(T1 - T2)

: _y2 (64 p/6) /A0
+csé<qu)»(ol+a2)+cﬁ(al‘q)(az~q)+c7(al‘q)(am)(nwz)]e Kia (oP 4ol

_ &afr(d?) [(al»q)(czlq)

+Cpo -o’] 71T
P2 ey 70102 (T1-72)

—y3 . (p0+p0) /A0
Vv _E o B (oPe) A

with Ci_7, ga, ce etc. low energy constants fitted to N-N scattering or 7-N
scattering data, A = 340 MeV is the momentum cutoff

LEC B B, G G G
—2443 —0.125 0.143 —0.012 —0.013

LEC G Gs Go G CE
—0.020 0.273 00 —0.078 0712

Table: Fitted LECs' in lattice unit
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Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

1 ~
Ho = K+ §CSU4Z :p2(n)
n
The smeared density operator p(n) is defined as
Zat(n )ai(m)+s. Y Z 3)
[ —n|=1 i
where i is the joint spin-isospin index
Gi(n)=ai(n)+sw Y, a(n) (4)
[n’—n|=1
In this work we use a lattice spacing a =1.32 fm and the parameter set

Csus = —3.41x 1077 MeV~2, s; =0.061 and sy, =0.5 .

T T
(O ) Pion-less EFT Leading Order -

’qj -—-c\He
o 3 )

-100 B
54 2
el >
~ 3
£ 8 200 [
< 1)
n j=]
[ £
% E -300 P~
8 ®

o EXp
-400 P
‘
1 1
00 100 200 0 10 20 30 40 50
Pret (MeV)

Mass number A
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ptQMC with realistic chiral interaction

-100 i:.""‘"-v~--v---v—--'r-—v—--v--w---w ---------

120 & ]

-140 L L L L L .
0.00 0.05 0.10 0.15 0.20 0.25

4l ® E v E ¢ E " Egpy

.'V~--v.__'_

B T

@~
* "o 0.0

L e
8 it o
,
T
20
RS TIST PP N S
-25 1
-’;-. _—
a0k [} R il SUE SERT SERE R SEEP TR :
1 1 1 1
-60 F T T T T
T
80 - el

hE T
Rl SEER R PURPSRP.

e
R S e S

Imaginary time T (MeV?)

@ We split H= Hy+ (H— Hp) and
perform perturbative calculations

@ Ej is the ground state of Hp

@ E; = Eg+ 8E; is the first order
corrected energy

@ E, = E; +6E is the second order
corrected energy

@ FEpon—pt is the exact solution
(~infinite order)

@ Red bars on the right: Experiments
Lu et al., PRL 128, 242501 (2022)

For “He and 190, sign problem prevent us
from going to large 7, resulting in large

statistical errors. But no need to worry,

Perturbation theory can save us!
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Abnormally large second order corrections

5 BAnianssasanines T aaaaarpaaaasaananns @ Though consistent with the exact
3, - .
o (@ °H oo 7] 22 (b) “He ] solutions, we found abnormally large
SEF -7 13 F~a- - - - - __ .
3 .- 2o T ] second order energy corrections
=-TF Ze--w. — S .
o S D D6k -‘\\i ] @ We write H= Hy+A(H— Hp) and
gl = exact S T " e "\ study the A-dependence of energies
= - pt1storder \ -28F - - pt1storder N
~ = pt2nd order L ~ = pt2nd order L (O < A < 1)
9 e ok
00 02 04)\0.6 08 1.0 00 02 04)\0.6 08 1.0 E]. — E0+248E1 is a Straight Iine

E> = E; +A%8E; is a parabola

Eqon—pt is the exact solution

For 10 we use three different Hy
Lu et al., PRL 128, 242501 (2022)

i~ -~ ptistorder . .
-160 b - = pt2nd order Hiuw) ¥6)
T
00 02 04,06 08 10

As Hp respects the SU(4) symmetry, the wave function |[Wy) must belong to one of
its irreducible representations (irreps). The full Hamiltonian H breaks the SU(4)
symmetry, thus its ground state |V) is a mixture of different SU(4) irreps. The
components of |W) that mixes the SU(4) irreps can only be seen in [6W;) or §E>
Reminder: A symmetry breaking perturbative Hamiltonian

usually implies a large 2nd order energy correction!
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Asymptotic beheaviour of the first order energy E;

The first order energy E; consists of components with different decay rates

= must be careful in extrapolations to T —

(Wrle=™Mo/2(Ho+ Ve)e ™0/2w )

Ei(7)=

= |Eg+e "A|CIPEy + (Wo| Ve |Wo) +2e "A/2Re [C' (W V| Wo))]

+‘C"2

(WrleHo|wr)

AW IVelwp)|/ (1+1C e

= Eo+ (Wo|Vc|Wo) + e~ ™/2 x 2Re [ C' (W | V| Wo)] + e~ ™2 |C' 2 (Ef - E1)

-110

‘\~\_‘E=E(oo)+Ce"A

first order energy E, 160

L /___-—(/
F- " E=E(x)+C'e™?

0.

T T T S [ ST T T
00 0.05 0.10 0.15 0.20
Imaginary time (MeV-")

0.25
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Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC.
Eexp is the experimental value. All energies are in MeV. We only show statistical errors

from the MC simulations.

E SE; E SE> E Eexp
SH  -7.41(3) +2.08 -533(3) —299 -832(3) 848
“He  —23.1(0) -02  -233(0) -58  -201(1) 283
8Be  —44.9(4) -17  -46.6(4) —11.1 -57.7(4) 565
2c -68.3(4) -18 -70.1(4) 188 -88.9(3) 922
60 —94.1(2) 56  —99.7(2) —29.7 —129.4(2) —127.6

(
1607 —127.6(4) +242 —103.4(4) -243 —127.7(2) -—127.6
160%  —161.5(1) +56.8 —104.7(2) -22.3 -127.0(2) —1276

Realistic N2LO chiral Hamiltonian fixed by few-body data + perturbative quantum
MC simulation = nice agreement with the experiments

Excellent predicative power = Demonstration of both nuclear force model and
many-body algorithm
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Perturbative calculations beyond the second order

o
0 L
Ho=K+06V, | Ho= K+ 0.8V,
“
-2
2 s
4
§ L=s
-5
R A S K RIS R O I S I I I R KRR
0 Ho= K+ 12V,

Hy =K+ 1.0V,

& 5 b % o~

012345678 91011121314

0 1234567 891011121314

° Ho=K 14V, |
or.——
s -
-10

Ho= K + 1.6V,

012345678 91011121314

01234567 891011121314

perturbative order n

Perturbative energy correction 8 E,, of the
deuteron at each order. For the zeroth

order we show Eg.

@ We calculated deuteron energy
E(?H) in a small box L=6.6 fm
with a chiral Hamiltonian

H is split as
H=(K+uVo)+(V-uWp), Vo'is
the SU(4) interaction and V is the
full chiral interaction

@ u=0.6,---,1.6 is a constant

Eo, 6E1 and S E, are always significant.
0 E3 and higher order contributions are
negligible, regardless of what Hy we

choose as the unperturbed Hamiltonian

The second order correction is large
due to the symmetry breaking effect.
There is no such mechanism for
higher-order corrections, thus the
higher-order corrections follow the
usual power-counting hierachy.
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Summary & Perspective

@ Ab initio nuclear physics grows rapidly in last two decades.
@ No core shell model, In-medium SRG, lattice EFT, Green’s function
Monte Carlo, Coupled cluster, ...
@ mass 4-100, ground state, excited states, finite - T, etc.
@ Monte Carlo methods are powerful but plagued by the sign problem.
@ Combining MC methods with the perturbation theory may solve the sign
problem in many useful senarios.
@ We developed an efficient algorithm for doing perturbative calculations in
MC methods beyond the first order.
@ When combined with a realistic nuclear chiral force, the results reproduce
the experimental binding energies very well.
@ Works in progress:
o Efficient methods for calculating the third order corrections, or
estimating the truncation errors of the perturbative series;

@ Applications to other interesting systems, e.g., bosons,
finite-temperature systems, density distributions, etc.;
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