Perturbative Quantum Monte Carlo Method for Nuclear Physics

Bing-Nan Lü¹ 吕炳楠

Nuclear Lattice EFT Collaboration

¹Graduate School of China Academy of Engineering Physics, Beijing

Sun Yat-sen University, School of Physics and Astronomy Sep-16-2022

Introduction: Nuclear physics frontiers

Hot Topics in Nuclear Physics

Introduction: Standard model of nuclear physics

 Shell model: mean field, shell structure, no central force (M. Mayer, J. Jensen, 1963 Nobel Prize)

 Collective motions: rotation and vibration, particle-vibration coupling (A. Bohr, B. Mottelson, J. Rainwater, 1975 Nobel Prize)

Introduction: Modern nuclear theories

Road map - Towards a comprehensive description of the nucleus

Ab initio methods:

Microscopic interactions
Lattice QCD (A = 0, 1, 2, ...)
NCSM, F-Y, GFMC (A = 3-16)
Coupled cluster, IMSRG (A = 16-100)

- Configuration-interaction theories:
 Phenomenological interactions
 Shell model
- Density functional theories:
 Phenomenological interactions
 mean field approximation
 Skyrme, Gogny, RMF, ...

Lattice EFT: Ab initio method for A = 3-100

Why need nuclear ab initio methods

Mean field models are useful but quantum correlations not included $|\Psi\rangle=1/\sqrt{2}\,[|0\rangle|1\rangle+|1\rangle|0\rangle]$

In mean field models, motion of particle 1 is independent of other particles $P(1,2) = P(1) \times P(2)$

Predictions are model-dependent

Example: symmetry energy

 $\ensuremath{\mathsf{N.-B.}}$ Zhang and $\ensuremath{\mathsf{B.-A.}}$ Li, EPJA 55, 39 (2019)

Symptom 1: Lack of quantum correlations Symptom 2: Imprecise nuclear forces Recipe: Exactly solve many-body Schrödinger equation with precise nuclear force ⇒ nuclear ab initio methods

Dimensionality curse in nuclear many-body problems

Exponential increase of resources

PRC 101, 014318 (2020)

Solution 1: Reduce effective Hilbert space

Solution 2: Monte Carlo algorithms

Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing $a \approx 1$ fm = 620 MeV (\sim chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions
- ullet Exact method, polynomial scaling $(\sim A^2)$

 $\uparrow a \sim 0.5 - 2 \text{ fm}$

Lattice adapted for nucleus

Introduction: Chiral effective field theory

Chiral EFT: The low-energy equivalence of the QCD Weinberg (1979,1990,1991), Gasser, Leutwyler (1984,1985)

- Proton (uud), neutron (udd), pion ($u\bar{d}$)
- Spontaneously broken chiral symmetry: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Goldstone theorem implies a light pion:
 Long-range part of the nuclear force
- Contact terms: Short-range part of the nuclear force
- Hard scale: $\Lambda_\chi \sim 1$ GeV: Chiral EFT works for momentum $Q \ll \Lambda_\chi$

Quarks confined in nucleons and pions

Comparison to Lattice QCD

	LQCD	LEFT
degree of freedom	quarks & gluons	nucleons and pions
lattice spacing	${\sim}0.1~\text{fm}$	${\sim}1$ fm
dispersion relation	relativistic	non-relativistic
renormalizability	renormalizable	effective field theory
continuum limit	yes	no
Coulomb	difficult	easy
accessibility	high T $/$ low $ ho$	low T / $ ho_{ m sat}$
sign problem	severe for $\mu>0$	moderate

Fit effective chiral force to N-N scattering data

- Chiral force is organized by a **power counting of** $(Q/\Lambda)^{V}$
- Fit chiral force in the **continuum** ($\Lambda \approx 400-500$ MeV):
 - IDAHO N⁴LO: Entem, Machleidt, Nosyk, PRC 96, 024004 (2017);
 - Bochum N⁴LO₊: Reinert, Krebs, Epelbaum, EPJA 54, 86 (2018)
- Fit chiral force on the lattice: by Nuclear Lattice EFT group, in progress

- Leading Order: EPJA 31, 105 (2007)
- Fit to NLO: EPJA 35, 343 (2008)
- Fit to N²LO: EPJA 53, 83 (2017)
- Fit to N³LO: PRC 98, 044002 (2018)

- Restore rotational symmetry: PRD 90, 034507 (2014)
- Precision phase shifts on lattice: PLB 760, 309 (2016)
 - Arbitrary coupled channels: PRC 100, 064001 (2019)
- Restore Galilean invariance: PRC 99, 064001 (2019)

Simulate many-body system in LEFT

• g.s. from imaginary time projection:

$$|\Psi_{\mathrm{g.s.}}
angle pprox \lim_{ au
ightarrow \infty} \exp(- au H) |\Psi_A
angle$$

with $|\Psi_A\rangle$ representing A free nucleons.

At finite temperature:

$$\langle O \rangle = \frac{\operatorname{Tr}\left(e^{-\beta H}\hat{O}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)}$$

For a two-body $\delta-$ function interaction on the lattice

$$H = \sum_{\boldsymbol{n}\boldsymbol{n}'} -\psi_{\boldsymbol{n}}^{\dagger} \frac{\nabla^{2}_{\boldsymbol{n}\boldsymbol{n}'}}{2M} \psi_{\boldsymbol{n}'} + C \sum_{\boldsymbol{n}} : (\psi_{\boldsymbol{n}}^{\dagger} \psi_{\boldsymbol{n}})^{2} :$$

 $\psi_{n}^{\dagger}(\psi_{n})$ create (annihilate) a partice at mesh point n.

N-N interactions decomposed with Hubbard-Stratonovich transformation:

$$: \exp(-a_t H) := \int \prod_{\boldsymbol{n}} ds_{\boldsymbol{n}} : \exp\left[\sum_{\boldsymbol{n}} \left(-\frac{s_{\boldsymbol{n}}^2}{2} + a_t \psi_{\boldsymbol{n}}^{\dagger} \sum_{\boldsymbol{n'}} \frac{\nabla_{\boldsymbol{n}\boldsymbol{n'}}^2}{2M} \psi_{\boldsymbol{n'}} + \sqrt{-a_t C} s_{\boldsymbol{n}} \psi_{\boldsymbol{n}}^{\dagger} \psi_{\boldsymbol{n}}\right)\right] :$$

Imaginary time extrapolation to find ground state

Samples are generated by Markov Chain Monte Carlo

Observables calculated as $\langle O \rangle = (1/N) \sum_{i=1}^{N} O_i$ Error scales as $\varepsilon \sim \mathcal{O}(1/\sqrt{N})$

Number of samples $\textit{N} \sim 10^3 {\sim} 10^6$

Total energies at large t follow

$$E_A(t) = E_A(\infty) + c \exp\left[-\Delta E \tau\right].$$

For any inserted operator \mathcal{O} ,

$$\mathscr{O}_A(\tau) = \mathscr{O}_A(\infty) + c' \exp\left[-\Delta E \tau/2\right],$$

c, c', ΔE are fitting parameters.

Monte Carlo sign problem

- Sign problem: Monte Carlo works well for well-behaved functions, however, sometimes the integral becomes highly oscillating.
- QMC sign problem comes from the fermion anti-symmetrization.
- Split $H = H_0 + \lambda V_C$. H_0 : w/o sign problem; V_C : w/ sign problem.
- Solution 1: numerical extrapolation from $\lambda = 0$ to $\lambda = 1$.
- Solution 2: perturbative calculation near $\lambda = 0$.

Monte Carlo sign problem

Monte Carlo methods are powerful, but limited by sign problem Fortunately, there are sign-problem-free systems with specific symmetries

"For example, the nuclear systems can be simulated with a SU(4) symmetric interaction in lattice EFT[18], or with simplified interactions such as AV8' with Green's function Monte Carlo method[44]. In condensed matter physics, the square-lattice Heisenberg model can be free from sign problem for specific parametrizations[45], and unified principles for designing sign-problem-free actions for lattice fermionic models are proposed[46-48]. In these works it was revealed that the sign problem can be avoided by imposing certain symmetries, such as time-reversal symmetry[46], Majorana positivity[47] or Majorana-time-reveral symmetry[48]. For ultracold atoms, spin- 3/2 fermionic system with exact SO(5) symmetry can be sign-problem-free[49] and more general rules for finding such systems are discussed[50]. The unitary Fermi gas with equal number of spin-up and spin-down particles provides another important system that can be simulated with QMC without the sign problem[51, 52]. In quantum chemistry, it is shown that the sign problem can be alleviated by optimizing the wave functions[53], or introducing efficiently computable basis changes[54]."

Nuclear force has an approximate SU(4) symmetry In this SU(4) limit the nuclear force is independent of spin-isospin and can be simulated without sign problem \leftarrow How good is this approximation?

N-N interaction in large- N_C

General form of the non-relativisitc N-N potential:

$$\begin{split} V_{NN} &= V_C + V_S \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_{LS} \vec{L} \cdot \vec{S} + V_T S_{12} + V_Q Q_{12} \\ &+ \left(W_C + W_S \vec{\sigma}_1 \cdot \vec{\sigma}_2 + W_{LS} \vec{L} \cdot \vec{S} + W_T S_{12} + W_Q Q_{12} \right) \vec{\tau}_1 \cdot \vec{\tau}_2 \\ S_{12} &= 3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\ Q_{12} &= \frac{1}{2} \left\{ (\vec{\sigma}_1 \cdot \vec{L}), (\vec{\sigma}_2 \cdot \vec{L}) \right\} \end{split}$$

 \Longrightarrow Standard decomposition in central (V_C, W_C, V_S, W_S) , tensor (V_T, W_T) , spin-orbit (V_{LS}, W_{LS}) and quadratic spin-orbit (V_Q, W_Q) terms

- Consider the limit $N_C \rightarrow \infty$ with $g^2 N_C =$ constant t 'Hooft, Nucl. Phys. B 72, 461(1974)
 - Central potentials: $V_C(r)$, $W_S(r) \sim N_C$, $W_C(r)$, $V_S(r) \sim 1/N_C$ \Longrightarrow Wigner SU(4) symmetry arises Kaplan, Savage, PLB 365 (1996) 244
 - Spin-orbit potentials: $V_{LS}(r)$, $W_{LS}(r) \sim 1/N_C$
 - Tensor potentials: $V_T(r) \sim 1/N_C$, $W_T(r) \sim N_C$
 - Quadratic spin-orbit potentials: $V_Q(r) \sim 1/N_C^3$, $W_Q(r) \sim 1/N_C$

Isospin	С	S	LS	Т	Q
V(r)	N _C	$1/N_C$	$1/N_C$	$1/N_C$	$1/N_C^3$
$W(r)\vec{\tau}_1\cdot\vec{\tau}_2$	$1/N_C$	N_C	$1/N_C$	N_C	$1/N_C$

[&]quot;Hidden spin-isospin exchange symmetry", Phys. Rev. Lett. 127, 062501 (2021)

Evidence of hidden symmetry in nucleus

• Construct a N²LO chiral force on the a=1.32 fm ($\Lambda \approx 471$ MeV) lattice:

$$H_{\mathrm{N}^{2}\mathrm{LO}} = -\frac{\nabla^{2}}{2M} + V_{2N} + V_{3N} + V_{\mathrm{lpion}} + V_{\mathrm{Coulomb}}$$

 V_{1pion} given by (broken) chiral symmetry. V_{2N} fixed by N-N scattering data.

ullet $H_{
m N^2LO}$ gives good description of symmetric nuclear matter and finite nuclei:

	$ ho_{ m sat}({ m fm}^{-3})$	E_{sat}/A (MeV)	K (MeV)	$E(^{16}\mathrm{O})~(\mathrm{MeV})$
LEFT	0.165(1)	-15.9(0)	263(8)	-117.1(1)
exp.	0.16(1)	-16(1)	240(20)	-127.6(0)

• Contribution of various contact terms in V_{2N} to $E(^{16}O)$ (perturbatively):

operator	N _C pow.	Q pow.	E (MeV)	operator	N _C pow.	Q pow.	E (MeV)
1	N _C	1	-430.4	$q^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2$	N _C	$(Q/\Lambda)^2$	24.2
$\vec{\sigma}_1 \cdot \vec{\sigma}_2$	$1/N_C$	1	33.0	$\frac{i}{2}(q \times k) \cdot (\vec{\sigma}_1 + \vec{\sigma}_2)$	$1/N_C$	$(Q/\Lambda)^2$	0.0
q^2	N _C	$(Q/\Lambda)^2$	22.8	$(\vec{\sigma}_1 \cdot q)(\vec{\sigma}_2 \cdot q)$	$1/N_C$	$(Q/\Lambda)^2$	0.4
$q^2\vec{\tau}_1\cdot\vec{\tau}_2$	1/ <i>N_C</i>	$(Q/\Lambda)^2$	6.0	$(\vec{\sigma}_1 \cdot q)(\vec{\sigma}_2 \cdot q)\vec{\tau}_1 \cdot \vec{\tau}_2$	N _C	$(Q/\Lambda)^2$	30.5
$q^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2$	1/ <i>N_C</i>	$(Q/\Lambda)^2$	0.6				

- Note that $1/N_C^2 \approx 0.1$, $(Q/\Lambda)^2 \approx 0.2$ in ¹⁶O. Red: suppressed by $1/N_C^2$ or $(Q/\Lambda)^2$. Blue: suppressed by both factors. every clear hierarchy
- SU(4) symmetric term dominate No sign problem, good for MC

Nuclear binding from a SU(4) nuclear force

Ab initio calculation = precise nuclear force + exactly solving Schrödinger equations

In full quantum Monte Carlo simulations, equations are solved exactly

A simple SU(4) interaction (central force only!) can describe the nuclear binding

Charge density and neutron matter from a SU(4) force

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.

Lu et al., Phys. Lett. B 797, 134863 (2019)

Trade-off in Monte Carlo simulations

- Simplified interactions with high symmetry ⇒Sign-problem-free, exactly solvable with MC
- Realistic complex interactions

 Severe sign problem, can only be approximately solved with mean field methods

Is it possible to exactly solve a realistic interaction with MC?

Idea: Starting from a simplified sign-problem-free interaction add corrections with perturbation theory

- Much weaker sign problem in perturbative calculations
- Most quantum correlations included non-perturbatively
- Systematically improvable order by order, can check convergence

Higher order perturbation theory is complicated (e.g., exponentially increasing number of Feynman diagrams)

Adaptation to MC is even more challenging!

Reyleigh-Schrödinger perturbation theory

For a Hamiltonian $H = H^{(0)} + \lambda V_C$,

In conventional stationary perturbation theory:

$$\begin{split} E_{i} &= E_{i}^{(0)} + \lambda \langle \Psi_{i}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle + \lambda^{2} \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} + \mathscr{O}(\lambda^{3}) \\ |\Psi_{i}\rangle &= |\Psi_{i}^{(0)}\rangle + \lambda \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} |\Psi_{k}^{(0)}\rangle + \mathscr{O}(\lambda^{2}) \end{split}$$

However, in projection Monte Carlo algorithms,

$$E_{\mathrm{g.s.}} = \lim_{ au o \infty} \exp(- au H) |\Psi_T
angle$$

targets the ground states (or low-lying states) directly.

- In projection methods, excited states are very expensive. ← required for 2nd order energy or 1st order wave function!
- All projection QMC calculations use at most first order perturbation theory.

Perturbative Monte Carlo (ptQMC) algorithm

We can expand $|\Psi\rangle$ against V_C ,

$$|\Psi\rangle = \lim_{L_t \to \infty} M^{L_t/2} |\Psi_T\rangle = |\Psi_0\rangle + |\delta\Psi_1\rangle + \mathcal{O}(V_C^2), \tag{1}$$

with the wave functions defined as

$$|\Psi_0\rangle = \lim_{L_t \to \infty} M_0^{L_t/2} |\Psi_T\rangle, \qquad |\delta\Psi_1\rangle = \lim_{L_t \to \infty} \sum_{k=1}^{L_t/2} M_0^{L_t/2-k} (M-M_0) M_0^{k-1} |\Psi_T\rangle,$$

$$E = E_0 + \delta E_1 + \delta E_2 + \mathcal{O}(V_C^3),$$

where the partial energy contributions at each orders are

$$E_{0} = \langle \Psi_{0} | (K + V) | \Psi_{0} \rangle / \langle \Psi_{0} | \Psi_{0} \rangle,$$

$$\delta E_{1} = \langle \Psi_{0} | V_{C} | \Psi_{0} \rangle / \langle \Psi_{0} | \Psi_{0} \rangle,$$

$$\delta E_{2} = (\langle \Psi_{0} | V_{C} | \delta \Psi_{1} \rangle - \delta E_{1} \operatorname{Re} \langle \delta \Psi_{1} | \Psi_{0} \rangle) / \langle \Psi_{0} | \Psi_{0} \rangle,$$
(2)

in which all matrix elements and overlaps can be expressed with,

$$\begin{split} \mathcal{M}(O) &= & \langle \Psi_{T} | M_{0}^{L_{t}/2} O M_{0}^{L_{t}/2} | \Psi_{T} \rangle, \\ \mathcal{M}_{k}(O) &= & \langle \Psi_{T} | M_{0}^{L_{t}/2} O M_{0}^{L_{t}/2-k} M M_{0}^{k-1} | \Psi_{T} \rangle. \end{split}$$

Lu et al., PRL 128, 242501 (2022)

ptQMC with realistic chiral interaction

Perturbed amplitude can be transformed into an approximate Gaussian integral with a variable change. Note that

$$\begin{split} \langle \exp(\sqrt{-a_t C} s \rho) \rangle_T &\approx \exp(\sqrt{-a_t C} s \langle \rho \rangle_T) \\ \mathscr{M}_k(O) &= \langle \Psi_T | M_0^{L_t/2} O M_0^{L_t/2-k} M M_0^{k-1} | \Psi_T \rangle \\ &= \int \mathscr{D} c P(c + \overline{c}) \langle \cdots O \cdots M(s_k, c + \overline{c}) \cdots \rangle_T \\ &= \mathscr{M}(s) \exp\left(\frac{\overline{c}^2}{2}\right) \int \mathscr{D} c \exp\left(-\frac{c^2}{2} + \varepsilon\right) \end{split}$$

$$ar{c}(\mathbf{n}) = rac{\partial}{\partial c(\mathbf{n})} \ln \langle \cdots M(s_k, c) \cdots \rangle_T \Big|_{c=0}$$
 is a constant field easy to calculate

Integral over c calculated with MC

Left panel: Test calculation of the transfer matrix energy $E = -\ln\langle \exp(-a_t H): \rangle/a_t$ Lu *et al.*, PRL 128, 242501 (2022)

Benchmark Hamiltonian: N²LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a N^2LO chiral Hamiltonian $H=K+V_{\rm 2N}+V_{\rm 3N}+V_{\rm cou}$

$$\begin{split} V_{2N} &= \left[B_1 + B_2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_1 q^2 + C_2 q^2(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_4 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right. \\ &\quad + C_5 \frac{i}{2} (\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) + C_6 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) + C_7 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right] e^{-\sum_{l=1}^2 \left(p_l^6 + p_l'^6\right)/\Lambda^6} \\ &\quad - \frac{g_A^2 f_\pi(q^2)}{4 F_\pi^2} \left[\frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})}{q^2 + M_\pi^2} + C_\pi' \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right] (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \\ V_{3N} &= \frac{c_E}{2 F_\pi^4 \Lambda_\chi} e^{-\sum_{l=1}^3 \left(p_l^6 + p_l'^6\right)/\Lambda^6} \end{split}$$

with C_{1-7} , g_A , c_E etc. low energy constants fitted to N-N scattering or π -N scattering data, $\Lambda = 340$ MeV is the momentum cutoff

LEC	B_1	B ₂	<i>C</i> ₁	C ₂	<i>C</i> ₃
	-2.443	-0.125	0.143	-0.012	-0.013
LEC	C ₄	C ₅	C ₆	C ₇	c _E
	-0.020	0.273	0.0	-0.078	0.712

Table: Fitted LECs' in lattice unit

Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$H_0 = K + \frac{1}{2} C_{SU4} \sum_{\boldsymbol{n}} : \tilde{\rho}^2(\boldsymbol{n}) :$$

The smeared density operator $\tilde{
ho}(\emph{\textbf{n}})$ is defined as

$$\tilde{\rho}(\mathbf{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}) \tilde{a}_{i}(\mathbf{n}) + s_{L} \sum_{|\mathbf{n}' - \mathbf{n}| = 1} \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}') \tilde{a}_{i}(\mathbf{n}'), \tag{3}$$

where i is the joint spin-isospin index

$$\tilde{a}_i(\mathbf{n}) = a_i(\mathbf{n}) + s_{NL} \sum_{|\mathbf{n}' - \mathbf{n}| = 1} a_i(\mathbf{n}'). \tag{4}$$

In this work we use a lattice spacing a = 1.32 fm and the parameter set

ptQMC with realistic chiral interaction

- We split $H = H_0 + (H H_0)$ and perform perturbative calculations
- E_0 is the ground state of H_0
- $E_1 = E_0 + \delta E_1$ is the first order corrected energy
- $E_2 = E_1 + \delta E_2$ is the second order corrected energy
- E_{non-pt} is the exact solution (~infinite order)
- Red bars on the right: Experiments Lu et al., PRL 128, 242501 (2022)

For ^4He and ^{16}O , sign problem prevent us from going to large τ_{r} resulting in large statistical errors. But no need to worry,

Perturbation theory can save us!

Abnormally large second order corrections

- Though consistent with the exact solutions, we found abnormally large second order energy corrections
- We write $H = H_0 + \lambda (H H_0)$ and study the λ -dependence of energies $(0 \le \lambda \le 1)$
- $E_1 = E_0 + \lambda \delta E_1$ is a straight line
- $E_2 = E_1 + \lambda^2 \delta E_2$ is a parabola
- \bullet $E_{\text{non-pt}}$ is the exact solution
- For ¹⁶O we use three different H₀
 Lu et al., PRL 128, 242501 (2022)

As H_0 respects the SU(4) symmetry, the wave function $|\Psi_0\rangle$ must belong to one of its irreducible representations (irreps). The full Hamiltonian H breaks the SU(4) symmetry, thus its ground state $|\Psi\rangle$ is a mixture of different SU(4) irreps. The components of $|\Psi\rangle$ that mixes the SU(4) irreps can only be seen in $|\delta\Psi_1\rangle$ or δE_2

Reminder: A **symmetry breaking** perturbative Hamiltonian usually implies a large 2nd order energy correction!

Asymptotic beheaviour of the first order energy E_1

The first order energy E_1 consists of components with different decay rates \Longrightarrow must be careful in extrapolations to $\tau \to \infty$

Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC. $E_{\rm exp}$ is the experimental value. All energies are in MeV. We only show statistical errors from the MC simulations.

	E_0	δE_1	E_1	δE_2	E_2	$E_{\rm exp}$
³ H	-7.41(3)	+2.08	-5.33(3)	-2.99	-8.32(3)	-8.48
⁴ He	-23.1(0)	-0.2	-23.3(0)	-5.8	-29.1(1)	-28.3
⁸ Be	-44.9(4)	-1.7	-46.6(4)	-11.1	-57.7(4)	-56.5
¹² C	-68.3(4)	-1.8	-70.1(4)	-18.8	-88.9(3)	-92.2
¹⁶ O	-94.1(2)	-5.6	-99.7(2)	-29.7	-129.4(2)	-127.6
$^{16}\mathrm{O}^{\dagger}$	-127.6(4)	+24.2	-103.4(4)	-24.3	-127.7(2)	-127.6
¹⁶ O [‡]	-161.5(1)	+56.8	-104.7(2)	-22.3	-127.0(2)	-127.6

Realistic N 2 LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation = nice agreement with the experiments Excellent predicative power \Longrightarrow Demonstration of both nuclear force model and many-body algorithm

Perturbative calculations beyond the second order

Perturbative energy correction δE_n of the deuteron at each order. For the zeroth order we show E_0 .

- We calculated deuteron energy $E(^2H)$ in a small box L=6.6 fm with a chiral Hamiltonian
- H is split as $H = (K + \mu V_0) + (V \mu V_0)$, V_0 is the SU(4) interaction and V is the full chiral interaction
- ullet $\mu=0.6,\cdots,1.6$ is a constant

 E_0 , δE_1 and δE_2 are always significant. δE_3 and higher order contributions are negligible, regardless of what H_0 we choose as the unperturbed Hamiltonian

The second order correction is large due to the symmetry breaking effect. There is no such mechanism for higher-order corrections, thus the higher-order corrections follow the usual power-counting hierarchy.

Summary & Perspective

- Ab initio nuclear physics grows rapidly in last two decades.
 - No core shell model, In-medium SRG, lattice EFT, Green's function Monte Carlo, Coupled cluster, ...
 - mass 4-100, ground state, excited states, finite T, etc.
- Monte Carlo methods are powerful but plagued by the sign problem.
- Combining MC methods with the perturbation theory may solve the sign problem in many useful senarios.
- We developed an efficient algorithm for doing perturbative calculations in MC methods beyond the first order.
- When combined with a realistic nuclear chiral force, the results reproduce the experimental binding energies very well.
- Works in progress:
 - Efficient methods for calculating the third order corrections, or estimating the truncation errors of the perturbative series;
 - Applications to other interesting systems, e.g., bosons, finite-temperature systems, density distributions, etc.;

THANK YOU FOR YOUR ATTENTION