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Nuclear clustering: Phenomenological viewpoint I

Nuclei are self-bound systems made of protons and neutrons.

0.0 MeV

20.210 MeV

α clusters could be taken as effective building blocks, e.g.,
8Be ≈ α+ α, 12C ≈ α+ α+ α, 16O ≈ α+ α+ α+ α, · · · .

This picture could also be extended to the heavier clusters, e.g.,
16O ≈ α+ 12C, 20Ne ≈ α+ 16O, 44Ti ≈ α+ 40Ca, · · · .
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Nuclear clustering: Phenomenological viewpoint II

◦ Cluster radioactivity: spontaneous emissions of α particles, 14C,
20O, 24Ne, · · · from heavy nuclei.

A natural explanation: the emitted cluster first preforms inside the
unstable parent nucleus and then escapes via quantum tunneling
⇒ Nuclear clustering in radioactive heavy nucleus (任老师团队)

◦What about the stable heavy nucleus? Cluster-knockout reaction.
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Nuclear clustering: Theoretical viewpoint
Consider a nuclear many-body Schrödinger equation(

T+
∑
ij

Vij +
∑
ijk

Vijk

)
|Ψ⟩ = E |Ψ⟩ ,

and we want to make approximations to the exact wave function |Ψ⟩.

◦Which model is better?
◦ Compare ⟨O⟩Model ≡ ⟨Model|O|Model⟩ and ⟨O⟩Ψ ≡ ⟨Ψ|O|Ψ⟩; the closer,
the better. Often, systematical improvements can be made upon the good
models.
◦ Cluster state: the cluster configurations are crucial, especially when
(⟨O⟩CM − ⟨O⟩Ψ)2 ≪ (⟨O⟩SM − ⟨O⟩Ψ)2.
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It would be nice if there is one model killing all the problems.

Shell model was thought to be a candidate. (Un)Fortunately, life is
not that easy!
“Rebellious sons”: the Hoyle state, cluster decays from heavy elem-
ents

R. Roth et al., PRL 107, 072501 (2011): NCSM + SRG + chiral potentials
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Localized Clustering vs Nonlocalized Clustering
How to model a cluster state?
Building blocks: clusters made of nucleons

Nonlocalized cluster model is proposed by周波, Y. Funaki, H. Horiuchi,
任老师 etc, PRL 110, 262501 (2013), often a better starting point. 8



Resonant and Scattering States: Phenomenological Viewpoint

Consider the elastic scattering a+ A → a+ A. Its cross section is
given by

σel =
4π

k2
∞∑
L=0

(2L+ 1) sin2 δL.

Naïvely, k ↑, E ↑, σel ↓. The presence of resonance invalidates this
expectation.

9



Resonant and Scattering States: Theoretical Viewpoint
Boundary conditions of Schrödinger equations

− d2

dr2
ϕ(r) + V(r)ϕ(r) = k2ϕ(r).

V(r) is short-range⇒ ϕ(r) → A exp(−ikr) + B exp(ikr), as r → ∞.
Scattering state: k2 > 0, ϕS(r) → exp(−ikr) + S(k) exp(ikr)
Bound state: k2 < 0, ϕB(r) → B exp(−κr), κ = |k|.
Resonant state: Re k > 0, Im k < 0, ϕR(r) → exp(ikr) ∝ exp(iRe k r)
× exp(−Im k r), blowing up in infinity,
E res = E− iΓ/2 = |Ẽ| exp (− 2iθR) ⇒ θR = 1

2
arctan ( Γ

2E).
Pole structures of S-matrix
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Why the resonant state is important for nuclear clustering?

◦ 8Be(0+1 ) just above 2α threshold
◦ 12C(0+2 ) just above 3α threshold
◦ 16O(1−2 ) above α+ 12C threshold
◦ 16O(0+6 ) just above 4α threshold
◦ 20Ne(1−1 ) above α+ 16O threshold
◦ · · ·
These cluster states are resonances.
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Bound-state approximation: suitable for resonant cluster states with
narrow widths
Pros:
1. intuitive physical picture
2. bound-state codes reusable

Cons:
1. not easy to distinguish between
resonant and scattering states,
especially for broad resonances
2. physical picture sometimes
inaccurate

◦ 8Be(2+1 ), a member of the ground-state band of 8Be, has a large decay
width ∼ 3 MeV compared to its total energy ∼ 1.5 MeV above the 2α
threshold.

◦ 12C(0+3 ), which is conjectured to be a breathing mode of the Hoyle state
12C(0+2 ), has a large decay width ∼ 1.45 MeV compared to its total energy
∼ 1.77 MeV above the 3α threshold.

⇒ A proper treatment of their resonant nature is important.

Goal I
Improving nonlocalized cluster model for resonances.

12



Why study the scattering states in microscopic cluster models?
Main reasons:
1. Scattering states are important ingredients in nuclear reaction
theories, e.g., elastic scattering, breakup reaction (CDCC: continuum-
discretized coupled channels), etc.
2. Microscopic reaction models are less explored than structural
models. The initial and final states naturally contain “clusters”⇒
Microscopic cluster models play a role naturally.
3. Interesting by itself, potential applications in nuclear astrophysics.

Goal II
Studying the nucleus-nucleus elastic scattering in nonlocalized cluster
model.
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Nonlocalized Cluster Model

The α-cluster wave function

Φα(R) =
1√
4!
det{φ0s(r1 − R)χσ1τ1 · · ·φ0s(r4 − R)χσ4τ4},

φ0s(r) = (πb2)−3/4 exp
[
− r2

2b2

]
.

Brink wave function

ΦB(R) =
1√
2

1√
8!
det{φ0s(r1 − R/2)χσ1τ1 · · ·φ0s(r4 − R/2)χσ4τ4

× φ0s(r5 + R/2)χσ1τ1 · · ·φ0s(r8 + R/2)χσ4τ4}.
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Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function

Ψ(β) = N
∫
d3R exp

(
− R2

2β2

)
ΦB(R).

Brink-THSR wave function

Ψ(β,T) = N
∫
d3R exp

(
− R2

2β2

)
ΦB(R+ T)

16



Separation of center-of-mass motion

Ψ(β,T) = ΨCM(XCM)× Ψ̂(β,T),

ΨCM(XCM) =

(
8

πb2

)3/4

exp
(
−
4X2

CM
b2

)
,

Ψ̂(β,T) =
1√
140

A12

[
Γ(ρ, β,T)ϕ̂(α1)ϕ̂(α2)

]
⇒ u(ρ),

Γ(ρ, β,T) =
(
2

π

)3/4 b3/2

(b2 + 2β2)3/2
exp

[
−(ρ− T)2

b2 + 2β2

]
.

Angular momentum projection

Ψ(β,T) = ΨCM(XCM)× 4π
∑
LM

Ψ̂LM(β, T)Y∗LM(ΩT),

Ψ̂LM(β, T) =
1√
140

A12ΓL(ρ, β, T)YLM(Ωρ)ϕ̂(α1)ϕ̂(α2)⇒
uL(ρ)
ρ

YLM(Ωρ),

ΓL(ρ, β, T) =
(
2

π

)3/4 b3/2

(b2 + 2β2)3/2
exp

(
− ρ2 + T2

b2 + 2β2

)
iL
(

2ρT
b2 + 2β2

)
.
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Interaction Model

The Hamiltonian is given by

H = T− TCM + VN + VC,

T− TCM = −
A∑
i=1

1

2m

(
∂

∂ri

)2

+
1

2Am

(
∂

∂XCM

)2

.

Effective nucleon-nucleon interactions are adopted in nonlocalized
cluster models, as well as many other microscopic cluster models.

VN,ij(r) =
Ng∑
k=1

Vk exp
[
−(r/ak)2

] (
wk − mkPσ

ijPτ
ij + bkPσ

ij − hkPτ
ij
)
.

Interaction k Vk (MeV) ak (fm) wk mk bk hk
Volkov No. 1 1 −83.34 1.60 1−M M 0 0

2 144.86 0.82 1−M M 0 0
Minnesota 1 200 1/

√
1.487 u/2 1− u/2 0 0

2 -178 1/
√
0.639 u/4 1/2− u/4 u/4 1/2− u/4

3 -91.85 1/
√
0.465 u/4 1/2− u/4 −u/4 u/4− 1/2
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The Bound-State Approximation

Single basis wave function:

◦ THSR: EL(β) = min
⟨Ψ̂LM(β)|HL|Ψ̂LM(β)⟩
⟨Ψ̂LM(β)|Ψ̂LM(β)⟩

.

◦ Brink-THSR: EL(β, T) = min
⟨Ψ̂LM(β, T)|HL|Ψ̂LM(β, T)⟩
⟨Ψ̂LM(β, T)|Ψ̂LM(β, T)⟩

.

Multiple basis wave functions:

◦ THSR: Ψ̃LM =

∫
dβ f(β) Ψ̂LM(β).

◦ Brink-THSR: Ψ̃LM(β) =

∫
dT f(T) Ψ̂LM(β, T).

⇒ variational principle ⇒ Hill-Wheeler equation.
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· · · + the R-Matrix Theory

η = Z2αe2
√

µ

2E
Coulomb-Sommerfeld parameter

Ψ̂int
LM(E) =

∫
dT fL(T,E)Ψ̂LM(β, T) =

∑
n

f̃L(Tn,E)Ψ̂LM(β, Tn),

Ψ̂ext
LM(E) =

1√
35

gextL (ρ)YLM(Ωρ)ϕ̂(α1)ϕ̂(α2),

⇒(HL + L(B)− E)Ψint
LM = L(B)Ψext

LM Bloch-Schrödinger equation

L(B) = 35
1

2µa
δ(ρ− a)

(
d
dρ
ρ− B

)
20



Scattering state: B = 0∑
n′

[C(0,E)]nn′̃ fL(Tn′ ,E) = ⟨Ψ̂L(β, Tn)|L(0)|Ψ̂ext
L (E)⟩ ,

[C(0,E)]nn′ =
(
Ψ̂L(β, Tn)

∣∣∣HL + L(0)− E
∣∣∣Ψ̂L(β, Tn′)

)
,

RL =
a
2µ

∑
nn′

ΓL(a, β, Tn)[C(0,E)]−1
nn′ΓL(a, β, Tn′),

SL =
H(−)

L (η, ka)− kaH(−)′

L (η, ka)RL

H(+)
L (η, ka)− kaH(+)′

L (η, ka)RL
.

Resonant state: B = B∗ ≡ kaH(+)′
L (η,ka)

H(+)
L (η,ka)∑

n′

(
Ψ̂L(β, Tn)|HL + L(B∗)|Ψ̂L(β, Tn′)

)
f̃L(Tn′ ,E)

=E
∑
n′

(
Ψ̂L(β, Tn)|Ψ̂L(β, Tn′)

)
f̃L(Tn′ ,E).

self-consistent generalized eigenvalue problem
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· · · + Complex Scaling Method (CSM)
Complex scaling transformation

r → r exp(iθ), ψ(r) → exp (i3θ/2)ϕ(r exp(iθ)).

⇒similarity transformation S(θ) =
∏
j
[exp(3iθ/2) exp(iθrj · ∇j)],

H → S(θ)HS(θ)−1, Ψ → S(θ)Ψ.

The Schrödinger equation:

− d2

dr2
ϕ(r) + V(r)ϕ(r) = k2ϕ(r)

⇒− exp(−2iθ)
d2

dr2
ϕθ(r) + V(r exp(iθ))ϕθ(r) = k2ϕθ(r).

Square integrable eigensolutions:
◦ Bound state: ϕB(r) ∝ exp(−κr) → ϕθB(r) ∝ exp(−κr exp(iθ))
◦ Resonant state: ϕR(r) ∝ exp(i|k| exp(−iθR)r) ⇒
ϕθR(r) ∝ exp(i|k|r exp(−iθR + iθ)); when θ > θR, ϕθR(r) → 0 as r → ∞.
◦ Scattering state: ϕR(r) ∝ A exp(−ikr) + B exp(ikr) ⇒
ϕθR(r) ∝ A exp(−ikr exp(iθ)) + B exp(ikr exp(iθ)); when k → k exp(−iθ),
square integrable, discretized energy. 22



⇐ ABC theorem by Aguilar, Combes, and Balslev.

◦ H → Hθ = exp(−2iθ)(T− TCM) +
∑
i<j

[VN(rij exp(iθ)) + VC(rij exp(iθ))] ,

◦ The complex scaled α-cluster wave function

Φθ
α(R) =

1√
4!
det{φθ

0s(r1 − R)χσ1τ1 · · ·φθ
0s(r4 − R)χσ4τ4},

φθ
0s(r) = (πb2 exp(−2iθ))−3/4 exp

[
− r2

2b2 exp(−2iθ)

]
.
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◦ Complex scaled Brink wave function

Φθ
B(R) =

1√
2

1√
8!
det{φθ

0s(r1 − R/2)χσ1τ1 · · ·φθ
0s(r4 − R/2)χσ4τ4

× φθ
0s(r5 + R/2)χσ1τ1 · · ·φθ

0s(r8 + R/2)χσ4τ4}.
Doing the substitution r → r exp(−iθ) in the matrix elements

Hθ → H,
φθ
0s(r1 − R/2) → exp(−i3θ/2)φθ

0s(r exp(−iθ)∓ R/2),

= (πb2)−3/4 exp
[
− (r− R exp(iθ))2

2b2

]
.

Therefore, the complex scaling transformation can be done by replacing
ΦB(R) → Φθ

B(R) ≡ Φθ
B(R exp(iθ)), while keeping the Hamiltonian not

transformed.
◦ Complex scaled THSR wave function

Ψ(β) → Ψθ(β) ≡ N
∫
d3R exp

(
− R2

2β2

)
ΦB(R exp(iθ))

= N ′
∫
d3R exp

(
− R2

2[β exp(iθ)]2

)
ΦB(R). 24
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The α+α System

Triple-α process in stars

The α+ α scattering is the background process.
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The Bound-State Approximation

The energy curves for the 0+, 2+, and 4+ states of 8Be given by a single
Brink-THSR wave function, with the parameter β being 0 fm, 1 fm, 2 fm, and 3 fm.
For β = 0 fm, the Brink-THSR wave function is reduced to the Brink wave function.27



The energy surfaces for the 0+, 2+, and 4+ states of 8Be given by a single
Brink-THSR wave function. 28



The R-Matrix Results

8Be
Iteration solutions of the Bloch-Schrödinger equation for the low-lying
resonant states of 8Be.
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The α+ α scattering

The phase shifts for the α+ α elastic scattering in the S, D, and G waves
against the total energy of the α+ α system in the CM frame. The parameter
β takes the values of 0 fm, 0.5 fm, and 1 fm. The channel radius is given by
a = 7.0 fm. 30



The CSM Results

Complex energy spectrum for the 4+ state with THSR wave functions. The
blue square, red circle, and orange triangle correspond to θ = 20◦, 23◦, 26◦

respectively. 31
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Summary

◦ Nonlocalized cluster model is a microscopic model for nuclear
cluster physics based on the picture of nonlocalized clustering.

◦ Hybridize nonlocalized cluster model with the R-matrix theory
and CSM to study resonant and scattering states.

◦ The spectrum properties of 8Be and the α+ α elastic scattering are
taken to validate the hybrid models, well consistent with other
methods.
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